Effect on various physiological and biological processes due to Microbial Consortium and their effect on growth and yield of maize (Zea mays L.) under dryland conditions of Southern Rajasthan

M.C. Choudhary*1, Ramawtar2, J.K. Balyan3, R.K. Sharma4, K.C. Nagar5, Suchitra Dadheech6, Sanjay Bijarniya7, S. Kumar8 and B.K. Meena1

1,2Department of Agronomy, College of Agriculture, Bhilwara, MPUAT, Udaipur, Rajasthan, India
3Department of Agronomy, Dryland Framing Research Station, Bhilwara, MPUAT, Udaipur, Rajasthan, India
4Department of Soil Science and Agricultural Chemistry, College of Agriculture, Bhilwara, MPUAT, Udaipur, Rajasthan, India
5Department of Agronomy, Krishi Vigyan Kendra, Bhilwara, MPUAT, Udaipur, Rajasthan, India
6Department of Horticulture, College of Agriculture, Bhilwara, MPUAT, Udaipur, Rajasthan, India
7Department of Horticulture, M. Sc Scholar Banaras Hindu University, Varanasi, U.P., India

(Received 30 September, 2023; Accepted 5 November, 2023)

ABSTRACT

Microbial consortium influences various physiological and biological processes in maize. The present study was aimed at growth and yield of maize affected by Microbial Consortium. An agronomic investigation was carried out at Dryland Farming Research Station, Arjiya, Bhilwara, MPUAT, Udaipur during kharif 2022. The experiment was laid out in a RBD with three replications. The experiment consisted of nine treatments and two different kinds microbial consortium was applied as soil application and seed inoculation or alone. Microbial consortium-2 applied as soil application and seed inoculation recorded significantly higher growth parameters, yield attributing traits and yield viz, plant height, dry matter accumulation (g/plant), cob/plant, grain/cob, yield (q/ha), test weight (g), and yield over control. It was at par with Microbial consortium-1 as soil application and seed inoculation.

Key word: Kharif maize, Microbial consortium and yield.

Introduction

Maize (Zea mays L.) is a leading cereal crop of the world belonging to family Gramineae. ‘Zea’ is a Greek word which means “sustaining life” and ‘Mays’ is a word from Taíno language which meaning “life giver”. It is considered as a staple food in many parts of the world. It is cultivated in nearly 205 million hectare and production of 1210 million tonnes with the productivity of the world is 58.78 q/ha (FAOSTAT-2021). Due to its higher yield potential among the cereals it is known globally as “Queen of cereals”. Maize is generally used for human and animal feed. It is widely processed
into various types of products such as corn meal, snacks, grits, starch, flour, tortillas and breakfast cereals. Nutritionally maize contains 72 % carbohydrate, 10 % protein, 8.5 % fibre, 4.8 % oil and some vitamins and minerals. Maize kernel is an edible and nutritive part of the plant. Maize is third most important cereal crop after wheat and rice in India with a production of 33.62 million tonnes in 10.04 million hectare area and having average productivity of 3349 kg/ha. The major maize growing states are Karnataka (15.53 %), Madhya Pradesh (13.59 %), Maharashtra (10.50 %) (Anonymous, 2022).

Microbial consortium is typically defined as a collection of different microorganisms with the capacity to cooperate in a community. The combined inoculation of beneficial microorganisms increased germination, nutrient uptake, plant height, number of branches, yield, and total biomass of the crop in addition to growth and yield characteristics.

Azotobacter is a group of gram negative, free-living, nitrogen fixing aerobic bacteria inhabiting in the soil and non-symbiotic nitrogen fixer in nature. It leads to high level of nitrogen fixation due to its rapid growth. Pseudomonas, Bacillus, Micrococcus, Aspergillus, Fusarium, etc. are the major phosphate solubilizing bacteria (PSB) in soil. Phosphorus is one of the major essential macronutrients for plants and it is applied to soil in the form of phosphatic fertilizers. However, a large portion of soluble inorganic phosphate that is applied to the soil as chemical fertilizer is immobilized rapidly and becomes unavailable to the plants. Phosphate solubilizing bacteria (PSB) are beneficial bacteria that have capacity to solubilize inorganic phosphorus from insoluble compounds. P-solubilization ability of rhizosphere microorganisms is considered to be one of the most important traits associated with plant phosphate nutrition. KSM (Potassium-solubilizing microorganism) is the metal-mobilizing and plant growth-promoting bacterium living symbiotically in or on the root surface and it helps in directly or indirectly promoting plant growth via solubilization of insoluble minerals (P and K). KSM such as Bacillus spp. and Pseudomonas spp. are the most dominant plant growth-promoting bacteria of rhizospheric soils.

ZSB (Zinc solubilizing bacteria) such as Pseudomonas protegens, Bacillus megaterium, Bacillus altitudinis is considered a promising approach for increasing zinc, phyto-availability and the enhancing crop growth and nutritional quality. Also it is necessary to understand the underlying bacterial solubilization processes to predict their repeatability in inoculation strategies.

The productivity of maize is low because mostly it is grown under rainfed conditions in kharif season without assured irrigation in addition to lack of suitable varieties, poor weed management, improper time of harvesting and poor soil health. Another factor contributing to low productivity of maize is use of suitable biofertilizer in terms of Microbial consortium. Lack of suitable Microbial consortium particularly for essential nutrient management may be one of them. Microbial consortium designed to reduce the problem, like fixation and immobilization of nutrients. It helps in utilization of applied nutrients more efficiently and correcting deficiencies rapidly especially for short duration crops. Hence, optimum mineral nutrient management through Microbial consortium application is basic requirement to realize potential yield of crops and maize as well.

Materials and Method

The experimental trial was conducted in the Dry Land Farming Research Station, Arjia, Bhilwara, Instructional Farm (Agronomy) during kharif 2022, which is located in the Southern region of Rajasthan at 24° 24' N latitude, 74° 40' E longitude, and an altitude of about 432 meters above mean sea level. This area is part of Rajasthan’s Agro-climatic Zone Va (Sub-Humid Southern Plain and Aravalli Hills). The investigation was done to assess the effect of Microbial consortium and inorganic fertilizers on growth and yield of maize under dryland condition of southern Rajasthan using randomized block design experiment was laid out with nine treatments viz., T1 control - RDF, T2 (RDF + microbial consortium-1 as soil application), T3 (RDF + microbial consortium-1 as seed inoculation), T4 (RDF + microbial consortium-2 as soil application), T5 (RDF + microbial consortium-2 as seed inoculation), T6 (RDF + Microbial consortium-2 as seed inoculation), T7 (75 % RDF + Microbial consortium-1 as soil application and seed inoculation), T8 (75 % RDF + Microbial consortium-1 as soil application and seed inoculation) and T9 (75 % RDF + Microbial consortium-2 as soil application and seed inoculation) and was replicated three times. Where, microbial consortium-1 contains Azotobacter + PSB + KSB and microbial consortium-2 contains Azotobacter + PSB + KSB + ZMB.
The dose of microbial inoculants as per treatment was applied as soil application before sowing and seed treatment at the time of sowing. The microbial inoculants were applied to the soil through mixing with 50 kg FYM with dose @ 3 l/ha. The seed inoculation was done as seed treatment @ 4 ml/kg seed at the time of sowing. The fertilizer application was done @ 60 kg N and 30 kg P$_2$O$_5$, ha as recommended dose.

Results and Discussion

Effect of microbial consortia on growth attributes of maize

The data presented in Table 1 exhibit that the application of RDF along with microbial consortium significantly impacted the various growth parameters viz., plant height, dry matter accumulation and leaf area index.

The significantly higher plant height, dry matter accumulation at 60 DAS and at harvest, and leaf area index at 30 and 60 DAS observed under RDF + microbial consortium-2 as soil application and seed inoculation which was significantly higher over control at 60 DAS and at harvest by 30.60% and 27.81%, respectively, however remained at par with treatment T4 (application of RDF + microbial consortium-1 as soil application and seed inoculation) and treatment T5 (RDF + microbial consortium -2 as soil application). However, plant height and dry matter accumulation at 30 DAS failed to show significant effect. The faster availability of nutrients due to microbial consortium inoculation throughout the cropping period enhances the nutrient requirement of the crop and production of greater number of photosynthetically active leaves which might have lead to higher production of carbohydrates and phytohormones which resulted in increased plant height and dry matter accumulation of maize. Nitrogen plays important role in the plant’s growth above ground. Phosphorous promotes strong root system development, cell division, flower and seed production in plants. Potassium improves the plant’s immunity to fight against diseases. Zinc is a crucial micronutrient plays a critical and major role in optimizing growth of plant due to its involvement in many enzymes and protein. All these beneficial effect improved growth and development of the plant and the results are in accordance with the findings of Khandare et al. (2019), Kakde et al. (2020), Fitriatin et al. (2021) and Jain et al. (2021).

Effect of microbial consortia on yield of maize

Significantly higher grain, stover and biological yields were observed in the treatment T7 (RDF + microbial consortium-2 as soil application and seed inoculation) and was at par with (T4) application of RDF + microbial consortium -1 as soil application and seed inoculation and (T5) RDF + microbial consortium -2 as soil application and significantly higher over rest of the treatments. While the harvest index was found non-significant. The extent of increase in yield due to a positive effect of microbial Table 1. Mean weekly weather parameters during crop growing season (kharif-2022-23)

<table>
<thead>
<tr>
<th>Week No.</th>
<th>Duration</th>
<th>Temperature (°C)</th>
<th>Relative Humidity (%)</th>
<th>Sunshine (hrs)</th>
<th>Rain (mm)</th>
<th>Evaporation (mm/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td>Max.</td>
<td>Min.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>7 July–8 July., 2022</td>
<td>32.5</td>
<td>25.1</td>
<td>84.0</td>
<td>47.5</td>
<td>1.9</td>
</tr>
<tr>
<td>28</td>
<td>9 July–15 July., 2022</td>
<td>32.5</td>
<td>23.7</td>
<td>78.3</td>
<td>47.6</td>
<td>2.8</td>
</tr>
<tr>
<td>29</td>
<td>16 July–22 July., 2022</td>
<td>30.5</td>
<td>21.6</td>
<td>83.9</td>
<td>56.9</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>23 July–29 July., 2022</td>
<td>28.9</td>
<td>22.8</td>
<td>85.7</td>
<td>68.6</td>
<td>0.2</td>
</tr>
<tr>
<td>31</td>
<td>30 July–5 Aug., 2022</td>
<td>30.1</td>
<td>24.5</td>
<td>83.4</td>
<td>66.4</td>
<td>1.1</td>
</tr>
<tr>
<td>32</td>
<td>6 Aug–12 Aug., 2022</td>
<td>31.5</td>
<td>23.7</td>
<td>84.9</td>
<td>70.6</td>
<td>1.2</td>
</tr>
<tr>
<td>33</td>
<td>13 Aug–19 Aug., 2022</td>
<td>29.8</td>
<td>22.9</td>
<td>83.1</td>
<td>71.7</td>
<td>0.3</td>
</tr>
<tr>
<td>34</td>
<td>20 Aug–26 Aug., 2022</td>
<td>28.9</td>
<td>24.3</td>
<td>86.4</td>
<td>80.9</td>
<td>1.0</td>
</tr>
<tr>
<td>35</td>
<td>27 Aug–2 Sept., 2022</td>
<td>32.8</td>
<td>22.3</td>
<td>73.9</td>
<td>61.3</td>
<td>2.5</td>
</tr>
<tr>
<td>36</td>
<td>3 Sep–9 Sept., 2022</td>
<td>33.8</td>
<td>22.6</td>
<td>69.3</td>
<td>42.4</td>
<td>5.7</td>
</tr>
<tr>
<td>37</td>
<td>10 Sep–16 Sept., 2022</td>
<td>31.5</td>
<td>23.1</td>
<td>68.7</td>
<td>56.0</td>
<td>6.2</td>
</tr>
<tr>
<td>38</td>
<td>17 Sep–23 Sept., 2022</td>
<td>32.4</td>
<td>21.0</td>
<td>69.3</td>
<td>55.7</td>
<td>5.1</td>
</tr>
<tr>
<td>39</td>
<td>24 Sep–30 Sept., 2022</td>
<td>31.1</td>
<td>20.4</td>
<td>65.3</td>
<td>41.4</td>
<td>6.1</td>
</tr>
<tr>
<td>40</td>
<td>1 Oct–7 Oct., 2022</td>
<td>34.5</td>
<td>21.4</td>
<td>70.4</td>
<td>38.0</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Source: DFRS Agro Meteorological Observatory, Arjia, Bhilwara, Rajasthan.
consortium inoculation might be due to more population of *Azotobacter*, phosphate, potassium and zinc solubilizing bacteria, better survival of inoculated microorganisms in the rhizosphere and seed surface due to presence of cell protectant chemicals such as PVP and trehalose. Application of microbial consortium enhanced high number of cells in the rhizosphere, multiplication and survival of cells due to availability of carbon and energy sources. Microbial consortium inoculation might improve nutritional environment. Hence, increased the supply of N, P, K and Zn as evidenced by the higher uptake of nutrients by plants might have stimulated the rate of various physiological processes in plant and led to increased growth and yield parameters consequently resulted in increased grain and stover yield of the crop. These results are in the line with the findings of Khandare *et al.* (2015), Bhavya *et al.* (2017), Gautam *et al.* (2017) and Mohanta *et al.* (2020).

Conclusion

Application of Microbial Consortium as soil and

Table 2. Physical, biological and chemical properties of the soil of the experimental field before the sowing of the crop

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Content</th>
<th>Method of analysis</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical composition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand (%)</td>
<td>34.40</td>
<td>International pipette method</td>
<td>Bouyoucos (1962)</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>30.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay (%)</td>
<td>35.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture</td>
<td>Clayloam</td>
<td>Texturereference</td>
<td></td>
</tr>
<tr>
<td>Physical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk density (g/cc)</td>
<td>1.39</td>
<td>Coresampler method</td>
<td>Black (1965)</td>
</tr>
<tr>
<td>Particledensity (g/cc)</td>
<td>2.56</td>
<td></td>
<td>Black (1965)</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>48.20</td>
<td></td>
<td>Black (1965)</td>
</tr>
<tr>
<td>Chemical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic carbon (%)</td>
<td>0.46</td>
<td>Rapid titration method</td>
<td>Walkley and Black (1934)</td>
</tr>
<tr>
<td>Available nitrogen (kg/ha)</td>
<td>252.50</td>
<td>Alkaline KMnO4 method</td>
<td>Subbiah and Asija (1956)</td>
</tr>
<tr>
<td>Available phosphorus (kg/ha)</td>
<td>15.70</td>
<td>Olsen's method</td>
<td>Olsen et al. (1954)</td>
</tr>
<tr>
<td>Available potassium (kg/ha)</td>
<td>362.60</td>
<td>Flame photometer</td>
<td>Flame photometer</td>
</tr>
<tr>
<td>Available zinc (mg/kg)</td>
<td>0.62</td>
<td>DTPA/extract method</td>
<td>Lindsay and Norvell (1978)</td>
</tr>
<tr>
<td>Electrical conductivity (dS/m at 25 °C)</td>
<td>0.828</td>
<td>Conductivitybridge</td>
<td>Richard (1968)</td>
</tr>
<tr>
<td>pH (1:2.5 soil water ratio)</td>
<td>7.32</td>
<td>pHmeter</td>
<td>Richard (1968)</td>
</tr>
</tbody>
</table>

Table 3. Plant height, dry matter accumulation, and LAI of maize as influenced by Microbial Consortium

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Plant height (cm)</th>
<th>Dry matter accumulation (g plant⁻¹)</th>
<th>LAI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 DAS 60 DAS At harvest</td>
<td>30 DAS 60 DAS At harvest</td>
<td></td>
</tr>
<tr>
<td>T1 : Control (RDF - 60:30:0)</td>
<td>42.5 139.2 164.3</td>
<td>17.4 46.2 133.7 1.65 2.15</td>
<td></td>
</tr>
<tr>
<td>T2 : RDF + Microbial consortium-1 as soil application</td>
<td>44.2 162.5 188.0</td>
<td>17.2 55.1 153.1 1.83 2.35</td>
<td></td>
</tr>
<tr>
<td>T3 : RDF + Microbial consortium-1 as seed inoculation</td>
<td>42.7 145.1 179.4</td>
<td>17.8 50.4 142.6 1.68 2.17</td>
<td></td>
</tr>
<tr>
<td>T4 : RDF + Microbial consortium-1 as soil application and seed inoculation</td>
<td>50.1 178.4 209.0</td>
<td>17.5 62.4 170.7 2.05 2.73</td>
<td></td>
</tr>
<tr>
<td>T5 : RDF + Microbial consortium-2 as soil application</td>
<td>46.2 172.1 205.3</td>
<td>18.2 60.9 166.2 1.93 2.66</td>
<td></td>
</tr>
<tr>
<td>T6 : RDF + Microbial consortium-2 as seed inoculation</td>
<td>43.1 146.4 182.6</td>
<td>18.4 52.9 147.8 1.83 2.21</td>
<td></td>
</tr>
<tr>
<td>T7 : RDF + Microbial consortium-2 as soil application and seed inoculation</td>
<td>50.7 181.8 210.0</td>
<td>18.6 63.0 173.9 2.08 2.79</td>
<td></td>
</tr>
<tr>
<td>T8 : 75 % RDF + Microbial consortium-1 as soil application and seed inoculation</td>
<td>43.3 149.2 184.4</td>
<td>18.3 54.5 150.5 1.81 2.22</td>
<td></td>
</tr>
<tr>
<td>T9 : 75 % RDF + Microbial consortium-2 as soil application and seed inoculation</td>
<td>44.0 155.6 187.5</td>
<td>18.2 54.6 152.7 1.83 2.31</td>
<td></td>
</tr>
</tbody>
</table>

SEm ± 2.0 5.7 7.3 0.9 2.3 6.3 0.06 0.09
CD at 5% NS 17.0 22.0 NS 7.0 19.0 0.19 0.26
Table 4. Grain yield, stover yield and harvest index as influenced by Microbial Consortium of maize

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Grain yield (q/ha)</th>
<th>Stover yield (q/ha)</th>
<th>Biological yield (q/ha)</th>
<th>HI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 : Control (RDF - 60:30:0)</td>
<td>34</td>
<td>44</td>
<td>78</td>
<td>43.14</td>
</tr>
<tr>
<td>T2 : RDF + Microbial consortium-1 as soil application</td>
<td>40</td>
<td>51</td>
<td>91</td>
<td>43.46</td>
</tr>
<tr>
<td>T3 : RDF + Microbial consortium-1 as seed inoculation</td>
<td>35</td>
<td>46</td>
<td>82</td>
<td>43.38</td>
</tr>
<tr>
<td>T4 : RDF + Microbial consortium-1 as soil application and seed inoculation</td>
<td>45</td>
<td>58</td>
<td>103</td>
<td>43.92</td>
</tr>
<tr>
<td>T5 : RDF + Microbial consortium-2 as soil application</td>
<td>44</td>
<td>56</td>
<td>99</td>
<td>43.89</td>
</tr>
<tr>
<td>T6 : RDF + Microbial consortium-2 as seed inoculation</td>
<td>36</td>
<td>48</td>
<td>84</td>
<td>43.42</td>
</tr>
<tr>
<td>T7 : RDF + Microbial consortium-2 as soil application and seed inoculation</td>
<td>46</td>
<td>58</td>
<td>104</td>
<td>43.80</td>
</tr>
<tr>
<td>T8 : 75 % RDF + Microbial consortium-1 as soil application and seed inoculation</td>
<td>37</td>
<td>49</td>
<td>86</td>
<td>43.34</td>
</tr>
<tr>
<td>T9 : 75 % RDF + Microbial consortium-2 as soil application and seed inoculation</td>
<td>38</td>
<td>50</td>
<td>88</td>
<td>43.43</td>
</tr>
<tr>
<td>SEm ±</td>
<td>1.69</td>
<td>1.96</td>
<td>3.05</td>
<td>1.20 NS</td>
</tr>
<tr>
<td>CD at 5%</td>
<td>5.06</td>
<td>5.89</td>
<td>9.14</td>
<td>NS</td>
</tr>
</tbody>
</table>

Seed inoculation along with RDF showed better performance with respect to growth and yield of maize in southern Rajasthan.

To boost the productivity of maize, application of sufficient quantity of Microbial consortium specially in the form of soil application and seed inoculation has distinct advantage of quick and efficient utilization of nutrients and reduced losses through leaching, fixation and regular uptake of nutrients by plant.

Conflict of Interest: None

References

