Analysing the long run relationship between CO₂ emissions and Energy use of United Kingdom

Akanksha Singh*1 and Nand Kumar2

1,2Department of Humanities, Delhi Technological University, New Delhi 110 042, India

(Received 28 November, 2023; Accepted 17 January, 2024)

ABSTRACT

In this study, the time series data of the United Kingdom from 1965 to 2021 for energy usage, total reserves, manufacturing, GDP and total carbon emission have been examined using autoregressive distribution lag (ARDL) model. The results revealed that energy usage, manufacturing and GDP have a positive relation with CO₂ emission both in the short run and long run raising environmental concerns on the contrary only total reserves have a negative relation in the short and long run. United Kingdom increasing energy efficiency have been a top priority in the recent era, in order to achieve the target of net zero carbon emission by 2050, government need to promote policies for energy mix which would increase the usage of other renewable energy as the challenges remain for manufacturing and transportation industry because the overall emission from these sectors remains largely unchanged despite advancements in fuel efficiency because the results indicates that a percentage increase in energy usage increase the CO₂ emission by 0.23% whereas 1% increase in manufacturing leads to 0.25% increase in the CO₂ emission.

Key words: ARDL, CO₂ emission, GDP, Energy mix, SDGs

Introduction

Over time, the UK has significantly reduced its carbon dioxide (CO₂) emissions as shown in Fig. 1. Between the early 1990s and 2019, emissions had decreased by about 43%, largely as a result of a move away from coal-based energy production, improved energy efficiency, and the expansion of renewable energy sources. The energy industry has significantly reduced its emissions. This reduction was greatly aided by the closure of coal-fired power stations and their replacement with natural gas and renewable energy sources like wind and solar. A challenge has been the transportation industry. The overall emissions from this sector remained largely unchanged because of a rise in road traffic, despite advancements in fuel efficiency and the use of electric vehicles. The United Kingdom government has established challenging goals for emissions reduction. The goal is to achieve net-zero emissions by 2050, which is legally required. The UK has introduced a number of policies, including carbon pricing and subsidies for renewable energy, to achieve this.

The United Kingdom’s energy mix has evolved over time, Fig. 2 shows the total energy usage of UK.
While natural gas, nuclear power, and renewable energy sources have gained popularity, the amount of coal used to generate electricity has significantly decreased. The UK is now a global leader in offshore wind energy because of the significant increase of wind power in particular. In the UK, increasing energy efficiency has been a top goal. This covers metrics for building, appliance, and industrial process energy efficiency. To promote more energy-efficient housing, initiatives like the Energy Performance Certificate (EPC) have been introduced. Energy production has become more decentralized in the UK, where more homes and businesses are using solar energy and small-scale wind power to generate their own electricity. This trend to decentralized energy production has helped to cut down on transmission losses. Although there have been oscillations in energy use in the household and industrial sectors, there has been an overall trend towards increased energy efficiency. Government incentives and policies have contributed to the promotion of sustainable practices and energy efficiency.

Literature Review

A significant number of studies show that, despite the fact that economic growth does result in an increase in energy consumption, carbon emissions are not permanently reduced as a result. Some scholars use econometric models to look at the short- and long-term dynamic interactions between factors like carbon emissions, financial growth, suburbanization, and international trade in order to offer direction for the sustainable development of a region or a nation. According to the environmental Kuznets curve (EKC) theory, there is an inverse U-shaped relationship between environmental pollutants like CO₂ and GDP (Jebli et al., 2016; Leal and Marques, 2020; Rafiq et al., 2016; Dong et al., 2017; Shahbaz et al., 2019).

Time series data for the three major nations of the USA, France, and Japan were studied from 1965 to 2020 using the Fourier ARDL, Fourier bootstrap Toda-Yamamoto, and wavelet coherence methods. According to this analysis, France crossed the breakeven threshold in 1978, demonstrating that CO₂ levels decreased as nuclear energy use increased (Singh et al., 2023). The South Asian EKC hypothesis was also confirmed, demonstrating the beneficial effects of LPG use on the environment (Murshed, 2021).

GDP and CO₂ emissions are inversely correlated, according to research on 31 developing countries with subpar clean energy development Aye et al. (2017). While few studies (Teng et al., 2021; Ahmed et al., 2019; Ahmed et al., 2020; Odugbesan and Adebayo, 2020; Pablo et al., 2016; Wasti et al., 2020) found a positive link between GDP and CO₂ emissions. The most modern econometric approaches, like ARDL, Wavelet coherence, and Fourier analysis, have been used in several research to analyse the causal relationship and unidirectional connectivity between energy, GDP, and CO₂ emissions. Yang and Zhao (2014), Adebayo et al., 2020; Adebayo et al., 2021; Khobai and Roux (2017), Wu et al., 2022, Adebayo, 2020; Gao and Zhang, 2021; Faisa et al., 2016, Jafari et al., 2015, Wang et al., 2019; Aydoan and Vardar, 2020; Kirikkaleli et al., 2020; Kirikkaleli and Adebayo, 2021.

The study found that using biofuels instead of fossil fuels reduces greenhouse gas emissions by 70%. The economic potential of biofuels was studied between 2001 and 2022 using bibliometric analysis. The research revealed that while the US, China, In-
dia, and Europe have the largest biofuel markets, many other developed and developing countries still have smaller and less developed markets for sustainable biofuels (Hasan and Coworkers, 2023).

Methodology

To test our hypothesis and accomplish our objective, we used secondary time series data that we obtained from the World Bank Development Indicators (WDI). Equation 1 was created to analyse the relationship between CO$_2$ emissions, GDP, energy use (EU), manufacturing value (MV), and total reserves (TR) in the context of the United Kingdom from 1965 to 2021.

\[
\ln \text{CO}_2 = f(\ln \text{GDP}, \ln \text{EU}, \ln \text{MV}, \ln \text{TR}) \quad \ldots \quad (1)
\]

Here, ln is the natural log in the equation above, and Table 1 defines the variable description has definitions of the variables.

\[
\Delta \ln \text{CO}_2 = a_1 + \sum \beta_i \Delta \ln \text{GDP} + \sum \gamma_i \Delta \ln \text{EU} + \sum \delta_i \Delta \ln \text{MV} + \sum \epsilon_i \Delta \ln \text{TR} + \mu_i \quad \ldots \quad (2)
\]

The letters a1 to a3 in the equation above reflect the short-run relationship, b1 to b3 represent the long-run relationship, and a0 the drift component. While n_i is the optimal lag and t is the error term.

Results and Discussion

The study is conducted on time series data for 57 years so ADF unit root test was applied to check the stationarity of the variables, the results indicated that the variables were stationary at first difference, ARDL model is applicable if variables are stationary at level or first difference or a mixture of both and as the variables were stationary at first difference ARDL model was well suitable for this study. The table below illustrates the results of ADF unit root test.

<table>
<thead>
<tr>
<th>Variables</th>
<th>I(0)</th>
<th>I(0)</th>
<th>I(1)</th>
<th>I(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-stats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\Delta \ln \text{CO}_2 = \beta_1 + \sum \gamma_i \Delta \ln \text{GDP} + \sum \delta_i \Delta \ln \text{EU} + \sum \epsilon_i \Delta \ln \text{MV} + \sum \lambda_i \Delta \ln \text{TR} + \Theta \text{ECM} + \mu_i \quad \ldots \quad (3)
\]

In the equation above, the letters a1 to a 4 stand for the short-run relationship, b1 to b4 for the long-run connection, and a0 for the drift element. While t is the error term and n_i is the ideal lag.

Table 1. ADF unit root test

<table>
<thead>
<tr>
<th>Variables</th>
<th>CO2</th>
<th>GDP</th>
<th>EU</th>
<th>MV</th>
<th>TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-stats</td>
<td>-2.897</td>
<td>-1.591</td>
<td>-2.703</td>
<td>-1.488</td>
<td>-2.830</td>
</tr>
<tr>
<td>p-value</td>
<td>0.1713</td>
<td>0.78</td>
<td>0.239</td>
<td>0.822</td>
<td>0.1931</td>
</tr>
<tr>
<td>p-value</td>
<td>0.008***</td>
<td>0.002***</td>
<td>0.018***</td>
<td>0.003***</td>
<td>0.0098***</td>
</tr>
</tbody>
</table>

***, ** & * denotes 1%, 5% & 10% significance level.

The long-term relationship between the dependent and independent variables is assessed using the Auto Regressive Distributed Lag bond (ARDL) bound test. The upper bound and lower bound are two critical variables that the test displays. The lower bound assumes that all the variables are equal, while the upper limit assumes that there is a first difference for all of them in this situation.

The null hypothesis is rejected and co-integration is shown to exist if the upper limit value is less than the F statistic. ARDL bound test is used to check the cointegration between the variables, the finding reveals that the dependent variable CO$_2$ and the independent variables GDP, manufacturing, energy usage and total reserves are cointegrated as the F statistic is 4.26 which is greater than 3.49 the upper bound and 2.56 the lower bound at 5% significance level. Table 2 illustrates the results of the ARDL bound test.

Table 2. ARDL bound test

<table>
<thead>
<tr>
<th>Variables</th>
<th>F (CO2, GDP, EU, MV, TR)</th>
<th>Critical Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Statistic</td>
<td>4.264781**</td>
<td>1%</td>
<td>2.56</td>
<td>3.09</td>
</tr>
</tbody>
</table>

***, ** & * denotes 1%, 5% & 10% significance level.

Table 3 The results of the ARDL short run estimates are indicated in Table 4 indicating that energy usage and GDP is significant at 1% and is positively correlated with CO$_2$ emission, a 1% increase in the GDP will increase CO$_2$ by 1.12% whereas one percentage increase in energy usage will increase the CO$_2$ emission by 0.23% on the other hand manufacturing also has a positive relation and is significant at 10%, in all the independent variable only total reserves is negatively correlated with CO$_2$ emission indicating that a percentage increase in the reserves leads to 0.04 reduction in the CO$_2$ emission.

Table 4 displays the results of ARDL long run estimates where the results of ARDL long run esti-
Table 3. ARDL short run

<table>
<thead>
<tr>
<th>Variables</th>
<th>Probability</th>
<th>t-Statistics</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.0001***</td>
<td>4.5845</td>
<td>1.1222</td>
</tr>
<tr>
<td>MV</td>
<td>0.0701*</td>
<td>1.8598</td>
<td>0.2589</td>
</tr>
<tr>
<td>EU</td>
<td>0.0049***</td>
<td>2.9732</td>
<td>0.2321</td>
</tr>
<tr>
<td>TR</td>
<td>0.0239***</td>
<td>-2.3450</td>
<td>-0.0483</td>
</tr>
</tbody>
</table>

***,** &* denotes 1%, 5% & 10% significance level

mates where the results indicate that GDP, manufacturing and energy usage are significant at 1%, 10%, and 1% respectively and has a positive relationship with CO₂ emission hence it would be advisable to use more of green energy both for manufacturing process and energy use which would also impact the GDP on the other hand total reserves is significant at 5% and has a negative relation with the CO₂ emission.

Table 5 displays the results of diagnostic test Jarque-Bera normality test was employed to check whether the residual are normally distributed or not and the result reveal that the residuals are normally distributed (0.20 > 0.05). Ramsey Reset test was used to check the specification error and the result revealed that there was no specification error in the model (0.40 & gt; 0.05). Breusch-Godfrey serial correlation, LM test revealed that there exist no serial correlation among the error components in the model (0.38 & gt; 0.05). Lastly the outcomes of heteroscedasticity Breusch-Pagan-Godfrey test demonstrates that the data is homoscedastic.

Table 4. ARDL long run

<table>
<thead>
<tr>
<th>Variables</th>
<th>Probability</th>
<th>t-Statistics</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.0000***</td>
<td>4.5845</td>
<td>1.1222</td>
</tr>
<tr>
<td>MANUFACTURING</td>
<td>0.0701*</td>
<td>1.8598</td>
<td>0.2589</td>
</tr>
<tr>
<td>ENERGY</td>
<td>0.0049***</td>
<td>2.9732</td>
<td>0.2321</td>
</tr>
<tr>
<td>RESERVES</td>
<td>0.0239***</td>
<td>-2.3450</td>
<td>-0.0483</td>
</tr>
</tbody>
</table>

***,** &* denotes 1%, 5% & 10% significance level

Granger causality test is used for the time series data to predict whether one variable has potential prediction impact on the other variable. The results reveal that there exist unidirectional causation between CO₂ emission-GDP, total reserves-manufacturing and CO₂ emission-reserves at 10% significance level whereas manufacturing-CO₂ and GDP-reserves have a unidirectional causality linkage at 1% and 5% respectively. The Granger causality test results are shown in Table 6.

Table 6. Granger causality test

<table>
<thead>
<tr>
<th>Direction of Causality</th>
<th>F-statistics</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂-GDP</td>
<td>3.16670</td>
<td>0.0507*</td>
</tr>
<tr>
<td>Manufacturing-CO₂</td>
<td>5.07605</td>
<td>0.0098***</td>
</tr>
<tr>
<td>GDP-reserves</td>
<td>3.22392</td>
<td>0.0482**</td>
</tr>
<tr>
<td>Reserves-manufacturing</td>
<td>2.89367</td>
<td>0.0647*</td>
</tr>
<tr>
<td>CO₂-reserves</td>
<td>3.02068</td>
<td>0.0577*</td>
</tr>
</tbody>
</table>

***,** &* denotes 1%, 5% & 10% significance level

The stability of the model was checked by the cumulative sum of the recursive residuals stability test (CUSUM) and as the statistics were found to be between the critical bounds the model was found stable as shown in Fig. 3.

Conclusion

This study uses data from 1965 to 2021 to examine the relationships between carbon emissions, economic growth (GDP, Manufacturing, Reserves), and energy consumption of the United Kingdom. The findings reveal that energy use, GDP and manufacturing are positively related whereas total reserves have a negative relation with CO₂ emission both in the short run and long run respectively. The short

Table 5. Diagnostic tests

<table>
<thead>
<tr>
<th>Test</th>
<th>JB Normality Test</th>
<th>F-statistics</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramsey RESET test</td>
<td>10.25</td>
<td>0.0318</td>
<td></td>
</tr>
<tr>
<td>Breusch-Godfrey serial Correlation</td>
<td>16.68</td>
<td>0.122</td>
<td></td>
</tr>
<tr>
<td>Heteroskedasticity B.P.G. test, Observed R-squared</td>
<td>5.46</td>
<td>0.325</td>
<td></td>
</tr>
</tbody>
</table>

***,** &* denotes 1%, 5% & 10% significance level

Fig. 3 CUSUM test
and long run impact of GDP, energy usage and manufacturing on CO₂ emission is unfavourable that is a concern for the environment. Estimates of the linkages between economic expansion, CO₂ emissions, and energy consumption reveal that the United Kingdom has a wide range of options for establishing its energy policy toward alternative and renewable energy sources in an environmentally friendly and long-term manner. They could diversify their energy strategies in this direction, reducing environmental pollution while steadily and reliably increasing the energy supply over time. By supporting the development and widespread use of alternative and renewable energy technologies, it may also play a leading role in ensuring that future generations inherit a more habitable and cleaner environment.

Conflict of Interest - None

References

