SENSOR BASED METHOD TO DETECT AND MONITOR H₂S GAS – A REVIEW

RAJESH KUMAR¹ AND JYOTI SHEORAN²

¹Department of Physics, Lovely Professional University, Phagwara, Punjab, India
²Department of Physics, Mahila Mahavidyalaya, Bhiwani, M.S., India

(Received 19 February, 2021; Accepted 7 September, 2021)

ABSTRACT

This paper reviews work for sensor design along with sensing characteristics (stability, sensitivity, response time, range of operation etc.) to detect and control the risk of manure gas (H₂S gas). The comparison between sensors can be done on the basis of operating range of gas concentration and working principle and limitations of different parameters of sensor are identified. Solid state gas sensor measure intensive parameters on a successful scale and less successful in measuring concentration of gas (H₂O, CO, CO₂, methane etc). It was observed that sensing parameters can be explored for detecting H₂S gas by using semiconductor metal oxide such as CuO, SnO₂, ZnO, NiO, etc. Recently has been seen that CuO-based sensors have good sensing properties toward H₂S gas. The alternative of metal oxide sensor is use of conductive polymer on sensitizing surface. It is reviewed that ultrafast response/recovery and high selectivity parameters are very promising when hydrogen sulphide gas sensors are fabricated using α-Fe₂O₃ nano-ellipsoids. It also describes future aspects of these sensor based method.

KEY WORDS : H₂S, Detecting and monitoring H₂S, Air pollution

INTRODUCTION

Hydrogen sulfide gas is a common toxic gas which is released into environment mainly during the energy production process from coal and crude oil, its smell like rotten eggs which is referred as sewer gas or manure gas. Hydrogen sulphide gas is release when there is decay of organic matter and it can also occur when breakdown of bacteria occur (through wastage of human and animal). This gas is naturally produced in Kraft paper mills and also in refining of petroleum and landfills hydrogen sulphide gas is widely exists in many industrial processes, decomposition of organic material, natural gas and also in petroleum industry (Kim et al., 2006; Kim et al., 2008).

The effect of this gas is very harmful to our lives even at low concentration and it may cause death at high concentration (Kim et al., 2006). When low concentration of hydrogen sulphide gas is exposed then it leads to health problem like eye injury, throat injury, poor memory and loss of reasoning and balancing. This gas is responsible for many accidents in petroleum industry, gas industry and also in paper mills due to its toxic nature, its concentration and also due to duration of exposure.

Below Table shows that concentration of hydrogen sulphide gas and its effect on human body (Habeeb et al., 2017):

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Concentration</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 ppm</td>
<td>Nausea</td>
</tr>
<tr>
<td>2</td>
<td>20 ppm</td>
<td>Loss of smell</td>
</tr>
<tr>
<td>3</td>
<td>100 ppm</td>
<td>Eye injury/throat injury/ irritation</td>
</tr>
<tr>
<td>4</td>
<td>>250 ppm</td>
<td>Fatal death</td>
</tr>
</tbody>
</table>

Due to all of these disadvantages, it is very important to monitor and measure at proper time from environment there are many materials and various type of methods have been used for detecting H₂S gas (Pandey et al., 2012). Sensor based on metal oxide, optical sensor and electrochemical sensors are used to monitor this gas there have been a rapidly growth in sensing technology.
Electrochemical sensor is the method for detecting H$_2$S gas along with electrochemical sensor, optical method/optical sensors are used. The principle of optical sensors based on fluorescence or direct optical detection in heterogeneous phase. Most of sensors has principle based on absorption and fluorescence (Guth et al., 2009; Gauglitz, 2004).

From the last few decades, chromatography and spectrometry method are used to identify the H$_2$S concentration in environment but these method are not so popular because of their complex sampling, analyzing process and high fabrication cost (Zoccali et al., 2019). Electrochemical and optical methods are of relatively high cost and implementation on gas sensor is restricted due to selectivity and limit temperature range. Researchers work on sensing properties and various type of sensors have been developed. These sensors become very popular because of its fabrication process and their excellent sensing performance. The sensor parameter like response time, recovery rate, high sensitivity, selectivity, stability etc. vary on the basis of design of fabrication of sensor, material type and on the principle involved in different sensors.

There are some promising materials which are used to detect H$_2$S gas. These material oxide-semiconductor material are used because of their properties. It is reviewed that in comparison of bulk structure, nonmaterial exhibit important properties or good sensing properties due to large surface area in comparison of volume. To increase the parametric performance of sensors, organic and inorganic materials are used for detection of H$_2$S gas (Rout et al., 2008).

It is reviewed that these sensing parameters can be explored for detecting H$_2$S gas by using ZnO, CuO, MoO$_3$, NiO, SnO$_2$, and α-Fe$_2$O$_3$ nanostructure metal oxide. Among all of these, CuO and α-Fe$_2$O$_3$ nonmaterials are promising material on behalf of their non-toxicity, low cost and in detection of various types of gas (ethanol, acetone, trimethylamine, NH$_3$ and H$_2$S) and show excellent sensing performance for H$_2$S (Diao et al., 2016). It was noted that the sensing parameters can vary with size, morphology and porosity of α-Fe$_2$O$_3$. The concentration of H$_2$S gas at ppb level will be achieved by using Fe$_2$O$_3$ nanostructure. The sensing parameter’s performance can be further increase when Fe$_2$O$_3$ is modified by using Nobel metals (Yan Wang et al., 2008).

H$_2$S gas sensor based on α-Fe$_2$O$_3$ nanoellipsoids (formed by hydrothermal method) show ultrafast response (0.8s to 2.2s), good recovery rate and excellent selectivity toward H$_2$S gas. Recently metal oxides appear as excellent sensitive material specially in hydrogen sulphide sensing. CuO based H$_2$S sensor use a narrow band gap semiconductor CuO which gave good response to H$_2$S gas. These sensors has excellent selectivity and sensitivity towards H$_2$S gas (Choi et al., 2013; Chen et al., 2008). The sensor based on metal oxides has high sensitivity, fast response, easy fabrication but limited selectivity and high dependence on relative humidity and also has high operating temperature (> 100 °C). It is review that there is alternative of metal oxide sensor that is use of conductive polymer on sensitizing surface (Duc et al., 2020).

In this review, firstly sensors are discussed on basis of principle and then on material type. Most promosing hydrogen sulphide gas sensing method is to be identified and discuss them along with their advantage, drawback and future perspective.

MOST COMMON SENSOR’S TYPES USED IN ANALYSIS OF H$_2$S

The development in search of new materials for H$_2$S sensors is because of compelling demand for low power consumption, low limit of detection and because of their low cost. In this review, for monitoring H$_2$S gas, important and common techniques in sensors have to be reported. Different types of sensor based on the material used and also on the working principle. These sensors are discussed below:

ELECTROCHEMICAL SENSOR

Electrochemical sensing technology began in 1950s for detecting oxygen gas and this technology became popular till 1980s because of the reason that these sensors can detect and measure the toxic gas from environment especially hydrogen sulphide. These type of sensors are based on electrolyte (may be solid or liquid electrolytes). This sensor operates when electric signal is produced via interaction of gases, the production of signal is based on the concentration of gas. On the basis of electrolyte, there are two type of electrolyte sensor (solid and liquid electrolyte), further divide electrochemical sensor into two type of sensors based on the basis of working principle, i.e. amperometric and potentiometric.

Amperiometric sensors used to produce current
signal and its rate of production of current signal is based on the concentration of analyte. These type of sensors are used to monitor the different gas such as CO$_2$, NO$_2$, O$_2$, glucose etc. Because of reliable properties, liquid electrolyte electrochemical cell is used in the detection of H$_2$S gas. Solid electrolyte sensors (solid polymer electrolyte –SPE) are used in determination of gas phase for H$_2$S in laboratory conditions. It showed a great performance over seven months with concentration of 100 ppm H$_2$S gas for 4hr per day. It was observed that the performance of sensor gets reduced because of the deposition of sulphur.

Potentiometric sensors produce potential signal by using ion electrode and rate of production is logarithmically proportional to concentration. This sensor is used to detect H$_2$S gas and its capacity for detection is 5-50 ppm with response time 4-8s. the selectivity of sensor towards H$_2$S have been improved by using Au catalyst as an alternative electrode (Scozzari, 2008).

It is reviewed that solid electrolyte sensor suffer from a number of limitation in sensing parameters because of intensive parameters, short life and low performance in composition of H$_2$S gas.

OPTICAL SENSOR

In the early of 1977s, parameter like pressure, temperature, magnetic field and electric current are sensed by optical sensors. The most effective chemical sensor is optical sensor which is based on the attenuation of light wave (Toda et al., 2004). The fabrication of these sensors depends on light interaction with analyte which is placed at interface of fiber/coating and can monitor the response via absorption and emission spectroscopy. These type of sensors can record excellent performance in stability and monitoring even at harsh environment. There are two types of sensing techniques are involved (direct and indirect) in optical sensor. Direct sensing technique such as IR, FTIR, UV absorption etc, analyte is detected through intrinsic optical property (Varga et al., 2006). Indirect sensing technique requires the reagent (solid/liquid) for analysis of detection of H$_2$S gas. To operate this sensor for 8hr, 1ml of reagent is neceassary.

It is reviewed that WENS (wireless electronic nose system) was designed to quantify H$_2$S and NH$_3$, along with their mixture. Various efforts have been initiated for a simple, fast response, low cost optical method to monitor the H$_2$S gas in concentration of 50 ppb- 50 ppm (Sen et al., 2008). This method became popular because of its operating temperature (Jiang et al., 2013).

SOLID STATE GAS SENSOR

These sensors are of three types based on sensing principle.

1. **Solid Electrolyte Gas Sensors**: These sensors are useful in high ionic conductivity at high temperature range 773 to 1573 K. The working principle of these type sensors is that oxygen ion conductor (Zirconia) act as solid electrolyte and have different oxygen potentials for separating two compartments with gaseous mixture working on this principle, oxygen sensors has wide application in combustion control in heat treatment furnaces, glass tank furnace, oil and gas stoves, boilers and oxygen control in melting of metals such as steel, copper etc. It is reviewed that due to quick monitoring, accuracy, simple design wide range of composition of zirconia, these sensors are very advantageful.

2. **Catalytic Combustion Sensors**: It is a single port device in which sensing material act as heater. These types of sensors are fabricated with mounting bead in platinum coil (highly dispersed catalyst). The combustion gas reacts with the catalyst and burn on the Pt. coil. The target gas can rise the temperature of element up to 673-723 K.

Fig. 1. Structure of catalytic combustion sensor element (Azad et al., 1992)

3. **Semiconductor Gas Sensors**: These sensors are widely used for detection of various gases from explosive gases (propane), toxic gases such as carbon monoxide. Mostly used semiconductor gas sensors are metal oxide semiconductor gas sensors (Cobianu et al., 2016). The metal oxide gas sensor technology is based on change in...
resistance of sensitive metal oxide layer on metal oxide which depends on the interaction of absorbed oxygen with gas, working temp. Range, grain size. The sensing material may be in form of heater or semiconducting material. This type of sensors achieves high level of selectivity based on the suitable coating. Detection limit is depend on the type of material used. Working principle is based on absorption/ disabsorption of the gas on metal oxide will change its conductivity and resistivity. Thus change in detection of target gas either change in conductivity or resistivity.

METAL OXIDE SEMICONDUCTOR MATERIAL BASED SENSORS

Sensor based on metal oxide such as Zn, Sn, Cu etc are very promising sensor because of the excellent characteristics (size, cost, power consumption) of metal oxide. When any gas is exposed on metal oxide then electronic properties gets change which show change in sensing system (Wang et al., 2010). Due to their fast response and ability of detection of H₂S at room temperature and low concentration, these materials are widely used. SnO₂ is mostly used in detection of H₂S gas at room temperature in range of 1-15ppm having recovery time of 40s and response time of 20s (Kanan et al., 2009). The response toward H₂S gas can be changed by changing the film thickness (by decreasing the film thickness response time can be increase). The sensitivity of sensor can be increase by using Ag as do-pant because Ag₂O particles are at grain boundaries of SnO₂ and there is p-n hetero-junction formed (Gong et al., 2006). When Fe doped SnO₂ is used then H₂S gas can be detected in the range of 10-250 ppm having response time of 5-15s. Fe₂O₃ based sensors were found to be highly selective for target gas (100ppm for 100hr) (Vaishampayan et al., 2008). Tanda et al. (2007) used ZnO semiconductor sensor for detecting H₂S gas (Tanda et al., 2007). The use of nanostructures material improve the gas sensing property.

It is reviewed that CuO is used to promote the sensing properties of SnO₂. When CuO is used then sensor exhibit sensitivity in the range of 20 ppm and response time is 15s. In detection of low level H₂S gas, SnO₂-CuO sensors were fabricated on silicon substrate. It was studied that CuO modified SnO₂ films were able to detect H₂S in 1-1200 ppm concentration range with response time of 15s. H₂S sensor based on metal oxide semiconductor was found highly sensitive and selective toward this gas.

It was studied that iron molybdate has good potential when it is used as sensing material. It was observed that Pd modified sensor showed a good response toward H₂S gas. The improvement in sensing parameter could not have been possible without some semiconductor material and catalyst. N-type oxide semiconductor increases the result of H₂S gas sensor. Along with n-type, WO₃ has gained more attention towards detection and sensitivity of H₂S (Hübner et al., 2011).

ORGANIC-INORGANIC BASED SENSORS:

The fabrications of electronic device based on organic and inorganic materials gain so much interest because of their properties of size, power saving and portability. Due to structure, size,
morphology, active surface area, WO₃ nanostructure sensor detects H₂S gas at very low concentration (Jiang et al., 1998).

SENSORS BASED ON CONDUCTIVE POLYMERS

Chemiresistive sensors based on CP (conductive polymer) are a good sensor in comparison of electrochemical and optical sensors because of their simple designing, low cost and in term of performance (Duc et al., 2020). The most common approach for increasing the sensing performance is that to hybridize them with noble metal particles, metal oxide and carbon based nano-objects (called as inorganic fillers) (Park et al., 2017). When these fillers are added then limit of detection and response time decrease which leads competing it to the metal oxide sensors. These sensors can easily be tuned by changing monomer and dopants and CP showed a great potential in H₂S sensing application (Dong et al., 1889).

CONCLUSION

Excellent sensing technology for hazardous hydrogen sulphide gas because of its toxic nature and act as pollutant have been reviewed. It is reported that most common sensors are electrochemical sensor, optical sensor, metal-oxide semiconductor sensor, nano-structured material based sensor, inorganic and organic material based sensors, conductive polymer based sensor. Gas sensor can be divided into three categories (1) semiconductor sensor (2) catalytic combustion sensor (3) solid electrolyte sensors.

In electrochemical sensor, solid polymer electrolyte is commonly used because of its low cost, small size and limit of detection. In optical method, direct sensing technology has great potential for monitoring H₂S gas. In form of sensor array system (WENS), the sensing material can improve the monitoring range up to ppb level. It is also reviewed that n-type metal oxide sensors because of their advantage (low cost and high sensitivity) are mostly used. Based on organic and inorganic nano composite, gas sensing parameters have shown good response.

It is reviewed that mostly sensors are operated under laboratory conditions and it is further need to validate in harsh environmental conditions. There are major factor such as stability, cost response time which must be taken into account in fabrication of H₂S sensors. In designing of reliable instrumentation, it is require resolving problem of poor delectability, selectivity and understanding of mechanism. One of the major issues for practical application of H₂S gas sensor is cost which can be resolved by using metal oxide based sensors but these sensors suffer from poor selectivity in presence of humidity.

It is observed that for increasing sensing performance, conductive polymer hybridized with inorganic fillers (noble metal particle, carbon based nano object) and these sensors can easily tuned by changing monomer and do pant, CP showed great potential in H₂S sensing application. It is reviewed that of α-Fe₂O₃ nano ellipsoid based gas sensor show excellent H₂S gas sensing characteristics (fast response/recovery speed, good selectivity and range of detection). However it is more to be investigating the link between material properties and sensing performance of gas sensors. For future perspectives, new materials are to be investigated for achieving high selectivity, high sensitivity, low detection range, small size and low cost.

REFERENCES

Duc, C., Boukhenane, M. L., Wojkiewicz, J. L., Redon, N.

Analytical and Bioanalytical Chemistry. 381(1) : 141-155.

Measurement Science and Technology. (20) : 042002.

Chemical Engineering. (34) : 837-854.

Sensors and Actuators B: Chemical. 153(2) : 347-353.

Sensors. (14) : 144-169.

Journal of Catalysis. 180 (1) : 24-35.

Sensors 9 (10) : 8158-8196.

Chemosphere. (70) : 807-820.

Atmospheric Environment. (39) : 1103-1112.

Kim, K., Jeon, E., Choi, Y. and Koo, Y. 2006. The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex.
Atmospheric Environment. (40) : 4478-4490.

Environmental Monitoring and Assessment. (121) : 343-354.

Polymers. 9(12) :155.

Sensors and Actuators B: Chemical. 28 (2) : 488-493.

NATO Science for Peace and Security Series A: Chemistry and Biology. 335-351.

Environmental Science & Technology. (38) : 1529-1536.

Sensors. 10 (3) : 2088-2106.

TrAC Trends in Analytical Chemistry. (118) : 444-452.