Eco. Env. & Cons. 29 (January Suppl. Issue) : 2023; pp. (S457-S467) Copyright@ EM International ISSN 0971–765X

DOI No.: http://doi.org/10.53550/EEC.2023.v29i01s.071

Stability Analysis of Bottle gourd (*Lagenaria siceraria* (Mol.) Standl.) in Southern Plains of Rajasthan (India)

Mohan Singh¹, Kapil Dev Ameta¹, Ram Avtar Kaushik¹, Kuldeep Singh Rajawat¹, Pushpendra Singh¹, Rajesh Meena¹, Mukesh Kumar Yadav² and Deepak Meena²

¹Department of Horticulture, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, Rajasthan, India ²Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, Rajasthan, India

(Received 14 July, 2022; Accepted 11 Octber, 2022)

ABSTRACT

Fifty-eight genotypes of bottle gourd were evaluated for stability in a Completely Randomized Block Design over three different environments in Rajasthan during summer and late Kharif 2021 (E2 & E3). According to the Eberhart and Russell model for stability analysis, P₃ x P₆ for days to first harvest, P₃ x P₆, P₃ x P₆, P₃ x P₆, $P_{4} \times P_{7}, P_{3} \times P_{7}, P_{1} \times P_{3} \text{ for fruit length}, P_{4} \times P_{10'}, P_{2} \times P_{5}, P_{1} \times P_{6} \text{ forrind thickness}, P_{1} \times P_{6}, P_{6} \times P_{8'}, P_{9} \times P_{10} \text{ for flesh thickness}, P_{6} \times P_{8'}, P_{3} \times P_{9'}, P_{1} \times P_{6'}, P_{8} \times P_{9'}, P_{8} \times P_{10'}, P_{4} \times P_{6} \text{ for stem girth}, P_{8} \times P_{9'}, P_{6} \times P_{8'}, P_{8} \times P_{10} \text{ for vine thickness}, P_{1} \times P_{1$ length at final harvest, $P_4 \times P_5$ and $P_5 \times P_6$ for yield per vine, $P_1 \times P_5$ and $P_1 \times P_3$ for total sugar and $P_5 \times P_{10}$, P_5 x P₉, P₉ x P₁₀, P₁ x P₂, P₁ x P₃, P₁ x P₆ and P₄ x P₇ for non-reducing sugar were exhibited non-significant deviation from regression (S^2d_i) and regression coefficient ($b_i < 1$) along with mean value lower than the population mean. It indicates that these hybrids would stable in unfavorable environment. The hybrids P $x P_5$ and $P_5 x P_7$ for days to first harvest, $P_5 x P_9$ and $P_3 x P_5$ for fruit length, $P_7 x P_{10} P_5 x P_7$, $P_6 x P_9$, $P_1 x P_5$ and $P_3 \times P_8$ rind thickness, $P_2 \times P_8$, $P_6 \times P_9$, $P_6 \times P_{10}$ and $P_4 \times P_9$ flesh thickness, $P_3 \times P_{8'} P_7 \times P_{10}$, $P_5 \times P_{7'} P_6 \times P_{10}$, $P_1 \times P_{10} \times P_{10}$, $P_1 \times P_{10} \times P_{10}$, $P_2 \times P_{10}$, $P_1 \times P_{10} \times P_{10}$, $P_2 \times P_{10}$, $P_2 \times P_{10}$, $P_1 \times P_{10}$, $P_2 \times P_{10}$, $P_2 \times P_{10}$, $P_2 \times P_{10}$, $P_1 \times P_{10}$, $P_2 \times P_{10}$, $P_2 \times P_{10}$, $P_2 \times P_{10}$, $P_1 \times P_{10}$, $P_2 \times P_{10}$, $P_2 \times P_{10}$, $P_1 \times P_{10}$, $P_2 \times P_{10}$, P P_2 for stem girth, $P_1 \times P_{10'}$, $P_3 \times P_6$ and $P_5 \times P_6$ for vine length at final harvest, $P_5 \times P_{8'}$, $P_8 \times P_{10'}$, $P_7 \times P_{9'}$, $P_1 \times P_{9'}$, $P_4 x P_{10} P_1 x P_6$ and $P_6 x P_9$ for yield per vine, $P_7 x P_9$ and $P_7 x P_{10}$ for total sugar, $P_1 x P_3$ for reducing sugar and $P_{8}^{T} x P_{9}^{T}, P_{6}^{T} x P_{10}^{T}, P_{3}^{T} x P_{7}, P_{3}^{T} x P_{9}^{T}, P_{2}^{T} x P_{3}^{T}$ and $P_{1}^{T} x P_{8}^{T}$ for non-reducing sugar were exhibited non-significant deviation from regression (S²d_i) and regression coefficient (b_i>1) along with mean value higher than the population mean. It indicates that these hybrids would stable in favorable environment. The hybrid P₈ x P₁₀ and $P_9 \times P_{10}$ for rind thickness and the hybrid $P_4 \times P_9$ yield per vine were exhibited non-significant deviation from regression (S²d_i) and regression coefficient nearly equal to a unit (b=1) along with mean value greater than the population mean, thereby indicated its average stability under different environment.

Key words : Bottle gourd, G x EInteraction, Stability, Non-significant deviation, Regression coefficient

Introduction

Vegetable is the most important component of a balanced hunman diet and also the main constituent in accomplishing nutritional security through providing vitamins, minerals, nutrient and nutraceutical compounds. Among the vegetables family cucurbitaceous forms, the largest group. All together there are 2 well defined sub-families, 8 tribes about 118 genera and 825 spices out of these, approximately 20 species belonging 9 genera are under cultivation (Jeffery 1990). Bottle gourd [*Lagenaria siceraria* (Mol.) Standl.] is one of the important cucurbits in world as well as in India. The genus Lagenaria that is derived from "Greek" word "lagena" meaning "bottle". It is also called white-flowered gourd or calabash gourd belongs to the gourd family *i.e. Cucurbitaceae*. According to Cutler and Whitaker (1961), this plant is probably indigenous to tropical Africa. According to De Candolle (1882), bottle gourd has been found in wild form in South Africa and India.Bottle gourd is a monoecious species with male and female flowers found on the same plant's leaf axils (Morimoto et al. (2004) and Singh, 2008). In bottle gourd, the monoecious sex expression predominates and andro-monoecious genetic stock (Andromon 6) was discovered to be recessive to monoecious by a single gene (Singh *et al.* 1996). Though monoecious, bottle gourd is a highly cross-pollinating crop (Tiwari and Ram, 2009). Yield stability has always been considered as an important topic in plant breeding but will be made more important by the continued variation in climatic conditions. The phenotype of an individual is a mixture of both genotype (G) and environmental factors (E). As a consequence of $G \times E$ interaction, crop varieties may not show uniform performance across different environments. The term "genotype" refers to the genetic makeup of an organism, while "environment" refers to biophysical factors that have an effect on the growth and development of a genotype. The $G \times E$ study is especially important in countries with various agro-ecologies. Significant G × E interaction is a consequence of variations in the extent of differences among genotypes in diverse environments or variations in the comparative ranking of the genotypes.

Experimental Materials and Methods

The experimental material comprised of 10 inbred

Table 1. Analysi	s of variance	Eberhart and	Russel	(1966)
------------------	---------------	--------------	--------	--------

Eco. Env. & Cons. 29 (January Suppl. Issue) : 2023

lines viz., DVBD-1 (P₁), VRBD-5 (P₂), VRBG-1 (P₂), DR-2017(Long) (P₄), VRBG-2-1-1 (P₅), VRBG-34 (P₄), VRBG-27-1 (P₇), VRBG-11-1 (P₈), VRBG-59 (P₉), IC-594545 (P₁₀), 45 F₁s and 3 checks viz., Parag, Prince and Mahy Warad. All the ten parental lines were received for Indian Institute of Vegetable Research, Varanasi. These 45 F₁s were obtained by crossing 10 inbred lines were crossed in diallel mating design (excluding reciprocal) design to develop a total forty-five hybrids in rainy season (July to February) of 2019-2020. Geographically Hi-tech unit, Department of Horticulture, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur is situated at 24^o 35' N latitude, 24º 42' E longitudes and an altitude of 579.5 meter above mean sea level. While, Krishi Vigyan Kendra, Chittorgarh is situated at 24º 85' N latitude, 74° 58' E longitudes and an altitude of 394.6 meter above mean sea level. The region falls under agroclimatic zone IVA "Sub-humid Southern Plain and Aravalli Hills of Rajasthan".

Statistical Analysis

The method of random sampling was adopted for recording the observations of various characters of bottle gourd. The observations for quantitative and biochemical characters were recorded on five plants per treatment in each replication. Data of five plants were averaged replication wise and mean data was used for statistical analysis. Separately environment wise analysis of variance for each character and each genotype was subjected to pooled analysis of variance (Panse and Sukhatme, 1985). The data collected from these separate sites was submitted to a stability analysis using Eberhart and Russell's model (1966). It's simply based on regression. The basic

S. No.	Characters	Genotype [57]	E+(G x E) [116]	E (L) [1]	G x E (L) [57]	Pool dev. [58]	Pool Err [342]
1	Days to first harvest	20.95**	1.86**	0.00	2.46**	1.32**	0.50
2	Fruit length (cm)	199.82**	0.58**	0.00	0.73**	0.44	0.35
3	Rind thickness (mm)	0.30**	0.01**	0.00	0.01**	0.00	0.00
4	Flesh thickness (mm)	950.77**	2.22**	0.00	1.44	3.03**	1.53
5	Stem girth (mm)	4.56**	0.34**	0.00	0.28**	0.42**	0.12
6	Vine length at final harvest (m)	1.59**	0.10**	0.00	0.18**	0.03	0.07
7	Yield per vine (kg)	4.24**	0.12**	0.00	0.22**	0.03	0.06
8	Total sugar (%)	0.05**	0.00**	0.00	0.00**	0.00**	0.00
9	Reducing sugar (%)	0.02**	0.00**	0.00	0.00**	0.00**	0.00
10	Non-reducing sugar (%)	0.02**	0.00**	0.00	0.00**	0.00**	0.00

*, ** Significant at 5% and 1% respectively

model employed is as follows: $Y_{ij} = \beta_{0i} + \beta_i I_j + \beta_{ij}$ where Y_{ij} is repercussion of ith of variety in jth locations, β_{0i} is respond of genotype i, β_i is regression coefficient of ith variety to varying environments indices. Ij is the coded environmental index; \ddot{a}_{ij} is the regression deviation and three additional parameters were calculated namely mean (μ_i), regression coefficient (b_i) and non-significant variation (S²d_i) from regression line.

Stability analysis through Eberhart and Russell model (1966)

Because of its versatility, performance stability is one of the most desired characteristics of any genotype. Stability measures, such as mean performance across environments, regression coefficient (b_i), and deviation from linear regression (S^2d_i), were calculated for all attributes under consideration of The Eberhart-Russell model (1966) (Table 3).

These stability criteria, as well as the mean value of characters influence a genotype's desirability. The linear regression coefficient (bi) was used to assess responsiveness of genotype. The high b, value indicates that the genotype is more responsive; such genotypes may thus be chosen for highly favorable environments (Below average stability). The fact that the regression coefficient (b.) is close to one implies that it is more adaptable (Absolute stability). If, on the other hand, the regression coefficient (b_i) is low, the genotype can only be cultivated in poor environmental conditions (Above average stability). The deviation from regression (S^2d_i) was used to assess stability. If S²d, deviates significantly from zero, the linear prediction is invalidated, whereas non-significant S²d, indicates that the performance of a genotype in a particular environment may be predicted.

Results

For days to first harvest, one hybrids $P_3 \times P_6$ (0.88) showed non-significant S²d_i and regression coefficient was less than a unit (b_i<1) with lower mean values than the population mean, indicated their stability for this character in unfavorable environment, two hybrids $P_4 \times P_5$ (1.30) and $P_6 \times P_7$ (1.71) registered non-significant deviation from regression (S²d_i) and regression coefficient was higher to unit (b_i>1) along with mean value lower than the population mean, thereby indicated good stability under different environment for days to first harvest. For fruit length, six hybrids *viz*. P₂ x P₉ (0.93), P₃ x P₆ (0.70), P₃ x P₉ (0.63), P₄ x P₇ (0.49), P₃ x P₇ (0.22) and P₁ x P₃ (0.21) expressed non-significant S²d₁ and regression coefficient less than a unit (b₁<1) along with mean value higher than the population mean, thereby indicated their stability and suitability for higher fruit length under unfavorableenvironment, two hybrids P₅ x P₉ (1.71) and P₃ x P₅ (1.86) showed non-significant deviation from regression (S²d₁) and regression coefficient greater than a unit (b₁>1) with higher mean value than the population mean value. These hybrids were therefore, identified as stable under favorable environment for longer fruit.

In case of rind thickness, hybrids $P_7 \times P_{10}$ (1.07), P_6 x P_7 (1.32), $P_6 x P_9$ (1.33), $P_1 x P_5$ (1.33) and $P_3 x P_8$ (1.98) showed non-significant deviation from regression (S^2d_i) and regression coefficient greater than unity $(b_{1}>1)$ with higher mean values than the population mean, these hybrids were considered stable and suitable for favorable environment. Three hybrids viz. $P_4 \propto P_{10}(0.92)$, $P_2 \propto P_5 (0.79)$ and $P_1 \propto P_6$ (0.74) expressed non-significant deviation from regression (S^2d) and regression coefficient lesser than a unit $(b_1 < 1)$ with higher mean than the population mean, these hybrids expressed stability for unfavorable environment, two hybrid $P_8 \times P_{10}$ and $P_9 \times P_{10}$ P_{10} exhibited non-significant deviation from regression (S²d₁) and regression coefficient nearly equal to a unit (b_i=1) along with mean value greater than the population mean, thereby indicated its average stability under different environment for rind thickness. For flesh thickness, four hybrids viz. P₂ x P₃ (1.06), $P_6 \times P_9$ (1.07), $P_6 \times P_{10}$ (1.13) and $P_4 \times P_9$ (1.77) registered non-significant deviation from regression (S²d_i) and regression coefficient greater than a unit (b>1) with higher mean values than the population mean, these genotypes were considered stable in good environment. Hybrids viz. $P_1 \times P_6$ (0.95), $P_6 \times P_8$ (0.37) and $P_{9} \times P_{10}$ (0.22) expressed non-significant deviation from regression (S²d_.) and regression coefficient lesser than a unit $(b_i < 1)$ with higher mean than the population mean, these hybrids thus exhibited stability for poor environment for flesh thickness.

Stability for stem girth, five hybrids $P_3 \times P_8$ (1.23), $P_7 \times P_{10}$ (1.28), $P_5 \times P_7$ (1.35), $P_6 \times P_{10}$ (1.74) $P_1 \times P_2$ (1.92) and one checks "Prince" (1.51) registered nonsignificant S²d₁ and regression coefficient (b₁>1) with lower mean value than the population mean, which indicating their stability under favorable environment for stem girth. Hybrids $P_6 \times P_8$ (0.99), $P_3 \times P_9$

Sl. Genotype			Days to first harvest			Fruit length (cm)			
No.	51	μ_{i}	b _i	S ² d _i	μ_{i}	b _i	S ² d _i		
1	P.	71.53	2.00	0.870	31.84	1.44	-0.352		
2	$\mathbf{P}_{\mathbf{r}}^{1}$	68.89	-0.72	-0.389	32.72	6.40	1.342*		
3	\mathbf{P}_{1}^{2}	71.48	-0.28	-0.492	34.45	2.79	-0.325		
4	P.	69.92	-5.60	0.180	32.66	-0.11	-0.130		
5	P_	71.80	0.93	-0.272	27.48	1.60	0.315		
6	P.	68.63	-0.10	-0.462	12.55	-0.28	-0.295		
7	P	71.02	-2.35	-0.096	13.26	1.69	-0.294		
8	P.	75.22	4.71	-0.332	14.35	0.66	-0.266		
9	$\mathbf{P}_{\mathbf{r}}^{-8}$	77.23	5.50	0.497	13.61	-2.39	0.345		
10	P.,	77.72	1.33	-0.411	13.51	-1.47	-0.153		
11	$\mathbf{P} \mathbf{x} \mathbf{P}$	70.60	2.70	-0.008	33.90	-3.57	-0.202		
12	$\mathbf{P} \mathbf{x} \mathbf{P}$	70.57	-0.40	-0.480	38.63	0.21	-0.094		
13	$\mathbf{P} \mathbf{x} \mathbf{P}$	69.94	-5.25	-0.352	29.63	4.38	0.298		
14	$P \times P$	71 14	4.30	1 686*	30.55	-1.89	-0.158		
15	$P \times P$	67.90	4 26	-0.434	27.96	-0.59	-0.048		
16	$P \times P$	70.88	-1.61	0.004	28.66	2 13	-0.310		
17	$P \times P$	72.42	240	0.485	29.00	9 49**++	-0.353		
18	$P \times P$	75.70	6.10	2.036*	29.51	3 40	-0.247		
19	$\mathbf{P}_{\mathbf{x}}\mathbf{P}_{\mathbf{y}}$	73.90	0.10	-0.402	32.24	3 59	-0.256		
20	$\mathbf{P} \mathbf{v} \mathbf{P}$	68.66	-3.13	-0.486	33.69	5.40	0.200		
20	$P \times P$	68.63	_2 72*+	-0.500	33 35	7 40	1 423*		
22	$P \times P$	70.03	-2.90+	-0 494	33.06	4 48	-0.015		
22	$P \times P$	68.82	-3.03	-0.120	32.46	3.05	-0.245		
23	$P \times P$	70.30	-3.81	-0.070	29.64	2.83	-0.340		
25	$P \times P$	70.50	-4 64	1 152	33.42	3.91	-0.168		
26	$P \times P$	73.42	8 20	-0.131	29.42	0.93	-0.295		
20	$P \times P$	74.92	1.07	-0.063	33.88	-3.14	-0.293		
28	$P \times P$	70.30	-1.13	2 733*	35.47	-0.87	0.252		
20	$P \times P$	70.30	-5 14	-0.330	31.28	1.86	0.716		
30	$P \times P$	69 71	0.88	-0.330 5 217**	30.44	0.70	-0.347		
31	$P \times P$	71 34	-0.89	2 044*	31.46	0.20	-0.071		
32	$P \times P$	70.18	3 55	3 952**	30.60	-9.83	5 655**		
33	$P \times P$	71.77	3.18	-0.103	31 51	0.63	-0.030		
34	$P \times P$	72.92	-5 41	-0.420	32 54	7 50	0.000		
35	$P \times P$	70.66	1 30	-0.348	36.17	-2.90	-0.332		
36	$P \times P$	67.28	-0.40	-0.037	31 54	-1.90	2 397**		
37	$P \times P$	71.04	-5.67	-0.392	30.19	0.49	-0.351		
38	$P \mathbf{v} P$	72.84	-2.09	-0.299	31.97	-5.17	0.399		
39	$P \times P$	74.76	2.09	0.188	28.49	-2.87	-0.346		
40	$P \times P$	77.70	9.09*+	-0.486	29.49	3.04	-0.235		
40 41	$P \times P$	70.72	3 72	2 554*	31.00	5 99	0.200		
42	$P \times P$	70.99	-4.04	4 021**	35.36	3 72*	-0.350		
43	$P \times P$	73.71	3 34	4 329**	29.76	7.03	0.000		
10	$P \times P$	73.71	-1.05	-0.382	21.70	1 71	-0.336		
45	$\Gamma_5 \times \Gamma_9$ P × P	75.57	-1.05 4 14**++	-0.502	30.71	3.87	-0.336		
46	$P \mathbf{v} P$	69.23	1 7 1	15 169**	13 20	1 74	_0 257		
47	$P \mathbf{v} \mathbf{P}$	71 93	_3.00	_0 200	13.42	-1 15	-0.237		
-1/ 48	$P \mathbf{v} \mathbf{P}$	71.75	3.70	0.379	13.56	-0.02	-0.330		
<u>4</u> 9	F_{6}	74 46	7 36	0.140	13.00	-1 78	-0 340		
50	$\mathbf{P} \mathbf{v} \mathbf{P}$	77.56	1.50	5 6/1**	13.51	-1.70	-0.340		
51	$P \mathbf{v} \mathbf{P}$	72.00	0.04	2 850**	15.00	2 70	-0.340		
52		76.78	5.45	0.541	1/ 20	_0.26	-0.322		
52	1 ₇ ∧ 1 ₁₀	10.20	5.45	0.341	17.00	-0.20	-0.552		

Table 2. Stability parameters days to first harvest and fruit length (cm)Eberhart and Russel (1966)

Table 2. Continued ...

Sl.	Genotype	D	Days to first harvest			Fruit length (cm)		
No.		μ_{i}	b _i	S ² d _i	μ_{i}	b _i	S^2d_i	
53	P _s x P _o	76.12	4.11	-0.348	16.09	1.09	-0.336	
54	$P_8 \times P_{10}$	77.01	8.00	-0.014	13.82	2.42	-0.318	
55	$P_{0}^{0} \times P_{10}^{10}$	75.97	8.15	0.685	15.08	-1.85	-0.257	
56	Check 1	72.19	5.97	0.111	35.12	-6.40	1.057*	
57	Check 2	71.80	1.09	-0.214	31.61	-1.58	-0.346	
58	Check 3	71.03	0.23	0.091	32.91	-1.05	-0.328	

(0.96), $P_1 \times P_6 (0.94)$, $P_8 \times P_9 (0.86)$, $P_8 \times P_{10} (0.21)$ and $P_4 \times P_6 (0.07)$ expressed non-significant deviation from regression (S²d_i) and regression coefficient (b_i<1) along with mean value lower than the population mean value, it indicates that these genotypes would express stem girth in unfavorable environment for stem girth. For vine length at final harvest, four hybrid $P_8 \times P_9$ (0.85), $P_6 \times P_8$ (0.76) $P_4 \times P_8$ (0.42) and P₈ x P₁₀ (0.21) expressed non-significant deviation from regression (S²d_i) and regression coefficient lesser than a unit $(b_i < 1)$ with higher mean values than the population mean, thereby indicated their suitability and stability under unfavorable environment. Three hybrids *viz*. $P_1 x P_{10}$ (1.74), $P_3 x P_6$ (1.79) and $P_5 \times P_6$ (1.91) registered non-significant deviation from regression (S^2d_i) and regression coefficient greater than a unit (b₁>1) with higher mean values that of the population mean. These hybrids were therefore considered suitable and stable in favorable environment for lengthof vine. Stability for yield per vine, two hybrids $P_4 \times P_5 (0.70)$ and $P_5 \times P_6 (0.46)$ showed non-significant deviation from regression (S²d_i) and regression coefficient lower than a unit (b_i<1) along with mean value higher than the population mean, thus indicated their stability under unfavorable environment. Seven hybrids $P_5 \times P_8$ (1.39) and $P_8 x P_{10}(1.55)P_7 x P_9$ (2.34), $P_1 x P_9$ (2.61), $P_4 x P_{10}$ (2.66), P1 x P6 (2.74) and $P_6 x P_9$ (2.89) showed nonsignificant deviation from regression (S²d_i) and regression coefficient more than a unit $(b_i > 1)$ with higher mean value than the population mean, this indicates that these hybrids were stable in favorable environment for fruit yield per vine. One hybrid P_4 x P_gexhibited non-significant deviation from regression (S^2d) and regression coefficient equal to a unit (b_i=1) along with mean value greater than the population mean, thereby indicated its average stability under different environment for yield per vine.

In case of total sugar content, two hybrids $P_1 \times P_5$

(0.95) and P₁ x P₃ (0.26) registered non-significant deviation from regression (S²d_i) and regression coefficient less than a unit $(b_1 < 1)$ along with mean value higher than the population mean value, thereby indicated their stability under unfavorable environment and suitability for higher total sugars, whereastwo hybrids $P_7 \times P_9$ (1.02) and $P_7 \times P_{10}$ (1.82) expressed non-significant deviation from regression (S²d_i) and regression coefficient greater than a unit (b > 1) with higher mean value than the population mean, indicates their stability under favorable environment forhigher total sugars. Stability for reducing sugar only one hybrid $P_1 \times P_3$ (1.16) registered non-significant deviation from regression (S²d₁) and regression coefficient greater than a unit (b_i>1) with higher mean values that of the population mean, these hybrids were therefore considered suitable and stable in favorable environment. In case of nonreducing sugar, six hybrids viz. $P_8 \times P_9(1.02)$, $P_6 \times P_{10}$ (1.05), $P_3 \times P_7 (1.12)$, $P_3 \times P_9 (1.28)$, $P_2 \times P_3 (1.31)$ and $P_1 \times P_8$ (1.43) registered non-significant deviation from regression (S^2d_i) and regression coefficient greater than a unit $(b_i > 1)$ with higher mean values than the population mean, these genotypes were considered stable in favorable environment. Seven hybrids viz. $P_5 x P_{10}(0.80)$, $P_5 x P_9(0.63)$, $P_9 x P_{10}(0.45)$, $P_1 x P_2 (0.35), P_1 x P_3 (0.32), P_1 x P_6 (0.30) and P_4 x P_7$ (0.20) expressed non-significant deviation from regression (S²d_i) and regression coefficient lesser than a unit (b < 1) with higher mean than the population mean, these hybrids thus exhibited stability for unfavorable environment for non-reducing sugar.

Discussion

For days to first harvest, one hybrids $P_3 \times P_6$ (0.88) showedstability in unfavorable environment, two hybrids $P_4 \times P_5$ (1.30) and $P_6 \times P_7$ (1.71)were expressed good stability under different environment.

SI	Genotype		Rind thickness (mr	n)	Fle	esh thickness (m	m)
No.	Genotype	μ.	b.	S^2d	μ.	b.	$\frac{11}{S^2d}$
1	D	0.1(1	1	10.00	1	1
1	P ₁	3.16	1.92	0.006	48.93	2.44	1.689
2	P ₂	3.03	-2.04	0.001	48.40	-0.74	-1.412
3	P ₃	2.68	7.43	-0.003	52.89	1.14	-1.520
4	P ₄	2.75	0.57	-0.003	48.81	-1.22	-0.459
5	P ₅	3.48 2.25	0.74	-0.001	45.98	1.69	-1.431
6	P ₆	3.23	0.24*	-0.004	89.44	-0.68	-1.269
/	P ₇	3.19 2.EE	-0.00	-0.003	89.04 08.75	2.29	-0.306
0	P ₈	2.55	-0.40	-0.004	98.75	1.87	-0.848
9	P ₉	2.88	0.88	0.001	98.68 06 FF	2.90	-1.392
10	Γ_{10}	2.70	0.58	-0.004	96.33	0.75	-1.058
11	$P_1 X P_2$ $P_2 X P_3$	3.17	3.04	-0.004	57.48	0.37	1.093
12	$\Gamma_1 \times \Gamma_3$	2.40	-0.63	-0.004	50.50	-0.13	-0.376
13	$P_1 X P_4$	2.87	-1.44	-0.004	51.57 49.6F	-0.01	1.270
14	$P_1 X P_5$	3.21	1.33	-0.002	48.65	0.19+	-1.531
15	$P_1 X P_6$	3.54	0.74	-0.003	69.66	0.95	-1.294
10	$P_1 X P_7$	2.80	0.38	0.004	61.90	2.56	-1.141
1/	$P_1 X P_8$	3.47	2.47	0.002	48.87	2.06 E 24	-0.025
10	$P_1 X P_9$	3.00	-14.75	0.001	59.09	5.24 0.25	0.032
19	$P_1 \times P_{10}$	2.89	-0.69	-0.004	58.57 E0 EE	0.23	-0.300
20	$\Gamma_2 \times \Gamma_3$	3.22	27.03	0.019	59.55	-3.13*+	-1.306
21	$P_2 X P_4$	2.88	-2.02	-0.000	50.29	2.18	0.036
22	$\Gamma_2 \times \Gamma_5$	5.21 2.40	0.79	-0.002	60.20	1.00	5.939
23	$\Gamma_2 \times \Gamma_6$	2.49	2.43	-0.004	60.20 E0.E1	1.37	-0.044
24	$\Gamma_2 \times \Gamma_7$ D × D	3.20	-1.96	-0.002	67.04	1.42	-1.525
25	$\Gamma_2 \times \Gamma_8$ P × P	3.22	-0.90	-0.004	07.04 57.23	3.87	13 083**
20	$P \times P$	2.40	-1.00	-0.003	56.82	2.80	1 0 4 1
21	$\Gamma_2 \times \Gamma_{10}$ P × P	2.00	2.45	-0.003	54.19	2.09	-1.041
20	$P \times P$	2.75	-1.84	-0.004	J4.19 46.14	1.07	-0.992
2)	$P \times P$	2.80	-1.04	-0.00/	40.14 60.96	2.18	2 992
31	$P \times P$	2.00	-1.77	-0.004	61.00	-1 76	-1.012
32	$P \times P$	3.14	1.19	0.005	60.06	4 93	0.048
33	$P_{3}XP_{8}$	2 79	_0 59	0.002	59 79	4.93	10 911**
34	$P \times P$	3.19	-0.09	-0.001	57 59	5.06	-1 449
35	$P \times P$	3 38	3.02	-0.004	49 72	2.62	-0.822
36	$P \times P$	3 51	3.17	-0.003	57.66	-2 20+	-1 521
37	$P \times P$	2.90	1 34	-0.004	58.26	3 36	3 577
38	$P \times P$	2.90	0.56	-0.004	57.23	3 33	-1 470
39	$P \times P$	2.01	-1 37	-0.004	69.44	1 77	-1 425
40	$P \times P$	3.26	0.92	-0.003	56.86	0.32	14 870**
41	$P \times P$	2 77	1.89	-0.004	57.28	1.26	-0.546
42	$P \times P$	2.84	1.09	-0.004	60.49	-1.76	-1 479
43	$P \times P$	2.81	-0.65	-0.004	61.22	2.26	7 230*
44	$P \times P$	3.13	2 78	0.004	60.96	1.82	-1 508
45	$P \times P$	2.82	2.95	-0.004	60.22	-1.33	0 249
46	$P_{x}P$	3.20	1.32	-0.004	88.17	2.60	26.989**
47	$P \times P$	2.22	0.86	-0.004	91.06	0.37	11.534**
48	$P \times P$	3.40	1.33	-0.004	99.55	1.07	-0.645
49	$P \times P$	3.16	-0.42	-0.000	89.66	1.13	-1 258
50	$P \times P$	2.89	0.06	-0.004	89 71	-6.45	13.728**
51	$P_{-} \times P_{-}$	2.80	1 14	-0.004	99.07	4.64	4,129
52	$P_7 \times P_{10}$	3.21	1.07	-0.004	108.92	5.69	-0.738

Table 3. Stability parameters rind thickness (mm) and flesh thickness (mm)Eberhart and Russel (1966)

Sl.	Genotype	R	ind thickness (m	m)	Fl	Flesh thickness (mm)	
No.		μ_{i}	b _i	S ² d _i	μ_{i}	b _i	S^2d_i
52	$P_{7} \times P_{10}$	3.21	1.07	-0.004	108.92	5.69	-0.738
53	$P_8 \times P_9^{10}$	2.35	4.18	-0.001	106.70	-7.96	1.308
54	$P_{8} \times P_{10}$	3.58	1.00	-0.004	89.22	6.40	-1.238
55	$P_{9} \times P_{10}$	3.16	1.00	-0.004	89.17	0.22	-0.430
56	Check 1	2.81	0.94	-0.004	57.30	-4.42*+	-1.529
57	Check 2	3.10	-1.61	-0.004	57.43	2.17	-1.494
58	Check 3	2.81	-0.03	-0.004	58.37	-0.39	-0.126

Table 4. Stability parameters stem girth (mm) and vine length at final harvest (m)Eberhart and Russel (1966)

Sl.	Genotype	Stem girth (mm)			Vine le	ength at final harv	est (m)
No.		μ_{i}	b _i	S ² d _i	μ_{i}	b _i	S ² d _i
1	P ₁	12.71	-1.01	0.084	5.49	-0.04	-0.037
2	P,	13.03	-5.54	0.839**	5.99	-1.91	-0.061
3	P ₃	13.40	0.48	-0.100	5.22	4.15	0.146
4	P_{4}	15.47	5.03*	-0.120	5.94	2.81	-0.065
5	P_5	14.55	5.51	0.047	6.31	1.40	-0.067
6	P ₆	13.37	4.40	-0.058	6.49	7.23	-0.046
7	P_7	13.31	-1.37	0.252	6.44	-7.98	-0.045
8	P _s	13.88	-5.62	1.470**	5.47	5.56	-0.056
9	P	16.00	3.20	-0.050	4.38	0.58	-0.052
10	P ₁₀	14.49	4.99	0.919**	6.24	2.27	-0.057
11	$P_1 x P_2$	14.44	1.92	0.546*	4.97	0.61	-0.064
12	$P_1 \times P_3$	12.68	-2.65	-0.089	6.29	2.54	-0.063
13	$P_1 \times P_4$	12.78	-2.10	0.755**	5.58	5.63	-0.016
14	$P_1 x P_5$	13.75	-0.66	1.018**	5.39	-1.89	0.033
15	$P_1 x P_6$	14.60	0.94	0.413*	6.05	-0.63	-0.018
16	$P_1 \times P_7$	16.35	3.40	0.008	6.29	-2.45	0.007
17	$P_{1} X P_{8}$	15.78	5.65	-0.102	6.29	2.69	-0.026
18	$P_1 \times P_9$	13.89	2.60	0.453*	5.27	2.18	-0.036
19	$P_{1} \times P_{10}$	13.15	-0.54	-0.090	6.06	1.74	0.052
20	$P_{2} \times P_{3}^{10}$	11.72	-0.29	0.010	5.05	11.22	0.029
21	$P_{2} \times P_{4}$	12.02	-3.20	1.338**	5.79	7.22*	-0.063
22	$P_{2} \times P_{5}$	12.82	0.89	-0.033	4.75	4.32	-0.001
23	$P_{2} \times P_{6}$	13.65	1.85	0.124	5.90	5.26	-0.042
24	$P_{2} \times P_{7}$	11.94	-0.76	-0.114	5.41	-0.71	-0.064
25	$P_{2} \times P_{8}$	12.24	1.87	0.023	4.93	0.53	-0.063
26	$P_{2} \times P_{9}$	13.81	-3.29	0.057	5.02	3.58	-0.055
27	$P_{2} \times P_{10}$	13.15	1.92	0.384*	5.08	-3.18	-0.037
28	$P_3 \times P_4$	13.46	2.63	-0.119	5.68	1.97	-0.023
29	$P_3 \times P_5$	12.81	-1.49	-0.122	6.17	-1.59	-0.062
30	$P_3 \times P_6$	13.10	-0.40	0.100	6.61	1.79	-0.059
31	$P_3 \times P_7$	13.88	5.30	-0.087	5.26	4.99	-0.067
32	$P_3 \times P_8$	15.26	1.23	1.200**	5.16	-7.06*++	-0.067
33	$P_3 \times P_9$	14.80	0.96	-0.063	4.47	1.68	0.191*
34	$P_{3} \times P_{10}$	12.90	1.06	-0.116	4.65	1.06*	-0.067
35	$P_4 \times P_5$	14.17	-3.38	-0.071	6.32	-4.02+	-0.066
36	$P_4 \times P_6$	15.40	0.07	-0.074	7.28	2.56	-0.063
37	$P_4 \times P_7$	15.34	2.71	-0.014	6.90	2.35	-0.062
38	$\mathbf{P}_4 \ge \mathbf{P}_8$	14.78	4.02	-0.072	6.38	0.42	-0.064

Sl.	Genotype		Stem girth (mm)	Vine le	ength at final harv	vest (m)
No.		μ_{i}	b	S ² d _i	μ_{i}	b	S ² d _i
40	$P_{4} \times P_{10}$	16.07	3.75	-0.117	7.40	-1.54	-0.064
41	$P_5 x P_6^{10}$	15.32	-0.83	0.984**	6.48	1.91	-0.041
42	$P_5 \times P_7$	15.58	1.35	-0.037	5.73	5.44	-0.046
43	$P_5 \times P_8$	14.93	2.71	0.147	5.69	6.08	-0.067
44	$P_{5} \times P_{9}$	15.26	-1.70	-0.116	6.40	-2.06	-0.056
45	$P_{5} \times P_{10}$	16.39	2.42	0.080	6.50	2.24	-0.062
46	$P_6 \times P_7$	14.28	2.82	0.117	6.76	4.53	-0.051
47	$P_6 x P_8$	14.10	0.99	0.442*	6.29	0.76	-0.059
48	$P_6 \times P_9$	14.48	3.55	-0.029	6.43	4.66*+	-0.067
49	$P_{6} \times P_{10}$	14.90	1.74	0.665*	5.29	-4.37	-0.058
50	$P_{7} \times P_{8}^{10}$	15.14	-4.68	-0.043	6.15	-2.75	-0.058
51	$P_7 \times P_9$	14.85	2.51	-0.031	6.46	-1.10	-0.065
52	$P_{7} \times P_{10}$	15.52	1.28	0.156	5.52	-1.23	-0.060
53	$P_8 \times P_9$	15.73	0.86	0.307	7.39	0.85	-0.065
54	$P_{8} \times P_{10}$	15.97	0.21	0.026	7.08	0.21	0.026
55	$P_{9} \times P_{10}$	16.01	4.93	0.388*	6.45	-0.41	-0.065
56	Check 1	14.63	-0.01	1.883**	6.42	-3.84	-0.060
57	Check 2	15.32	1.51	-0.114	6.49	-1.19	-0.064
58	Check 3	14.17	-1.45	-0.094	5.97	-1.45	0.014

Table 4. Continued ...

Stability for earliness has also been earlier reported by Samadia (2007), Shaikh et al. (2012) and Balat et al. (2021) in bottle gourd. For fruit length, six hybrids viz. P₂ x P₆ (0.93), P₃ x P₆ (0.70), P₃ x P₆ (0.63), P₄ x P₇ (0.49), P₃ x P₇ (0.22) and P₁ x P₃ (0.21) expressed stability and suitability under unfavorable environment, two hybrids $P_5 \times P_9 (1.71)$ and $P_3 \times P_5 (1.86)$ showed stable under favorable environment for longer fruit. Varalakshmi et al. (2018) have been also reported stable genotypes for fruit length in bottle gourd. In case of rind thickness, hybrids $P_7 \times P_{10}$ (1.07), $P_6 \propto P_7$ (1.32), $P_6 \propto P_9$ (1.33), $P_1 \propto P_5$ (1.33) and $P_{2} \times P_{8}$ (1.98) showed stable and suitable for favorable environment. Three hybrids viz. $P_4 \times P_{10}$ (0.92), $P_2 \times P_5 (0.79)$ and $P_1 \times P_6 (0.74)$ expressed stability for unfavorable environment and two hybrid $P_8 \times P_{10}$ and $P_{q} \times P_{10}$ exhibited stability under different environment for rind thickness. For flesh thickness, four hybrids viz. $P_2 \times P_8$ (1.06), $P_6 \times P_9$ (1.07), $P_6 \times P_{10}$ (1.13) and $P_4 \times P_9$ (1.77) registered genotypes were considered stable in good environment. Hybrids viz. P₁ x P_{6} (0.95), $P_{6} \times P_{8}$ (0.37) and $P_{9} \times P_{10}$ (0.22) expressed stability for poor environment for flesh thickness. Stable genotypes were reported by Dhakare and More (2008) for flesh thickness in muskmelon. Stability for stem girth, five hybrids $P_3 \times P_8$ (1.23), $P_7 \times$ P_{10} (1.28), $P_5 \times P_7$ (1.35), $P_6 \times P_{10}$ (1.74) $P_1 \times P_2$ (1.92) and one checks "Prince" (1.51) registered stability under favorable environment for stem girth. Hybrids $P_6 x P_8 (0.99)$, $P_3 x P_9 (0.96)$, $P_1 x P_6 (0.94)$, $P_8 x P_9$ (0.86), $P_8 \times P_{10}$ (0.21) and $P_4 \times P_6$ (0.07) expressed for stem girth in unfavorable environment for stem girth. For vine length at final harvest, four hybrid $P_{\scriptscriptstyle \! \alpha}$ x P_9 (0.85), P_6 x P_8 (0.76) P_4 x P_8 (0.42) and P_8 x P_{10} (0.21) expressed stability under unfavorable environment, three hybrids viz. $P_1 \times P_{10}$ (1.74), $P_3 \times P_6$ (1.79) and $P_5 \times P_6$ (1.91) stable in favorable environment for length of vine. Stable genotypes for vine length was also reported by Varalakshmi et al. (2018) while working with bottle gourd. Stability for yield per vine, two hybrids $P_4 \times P_5 (0.70)$ and $P5 \times P_6 (0.46)$ showed stability under unfavorable environment. Seven hybrids $P_5 \times P_8$ (1.39) and $P_8 \times P_{10}$ (1.55) P7 x P9 (2.34), P₁ x P₉ (2.61), P₄ x P₁₀ (2.66), P₁ x P₆ (2.74) and $P_6 \times P_0$ (2.89) expressed stability in favorable environment for fruit yield per vine. One hybrid $P_{4} \times P_{9}$ exhibited average stability under different environment for yield per vine. Stable genotypes for yield per vine have also been earlier reported by Samadia (2007), Varalakshmi et al. (2018) and Balat et al. (2021) in bottle gourd. In case of total sugar content, two hybrids $P_1 \times P_5$ (0.95) and $P_1 \times P_3$ (0.26) registered stability under unfavorable environment and suitability for higher total sugars, whereas two hy-

Sl. Genotype			Yield per vine (kg	;)	Non-reducing sugar (%)		
No.		μ_{i}	b _i	S ² d _i	μ_{i}	b _i	S^2d_i
1	P ₁	4.33	-3.37	-0.062	0.32	1.32	-0.000
2	P_2	5.42	-7.46	0.049	0.43	1.76	0.000
3	P_3	3.54	-0.47	-0.060	0.37	1.38	-0.000
4	P_4	5.34	6.48	-0.052	0.51	1.60	0.000
5	P ₅	4.29	2.16	-0.064	0.61	1.86	0.000
6	P ₆	4.62	3.15*	-0.064	0.41	1.24	-0.000
7	P_7	5.27	-5.53	-0.039	0.46	-0.22	0.001*
8	P_8	5.79	-2.44	-0.041	0.33	2.03	0.001*
9	P_9	5.09	13.34	0.224*	0.51	0.91	0.000
10	P_{10}	6.36	1.39	-0.054	0.53	0.16	-0.000
11	$P_1 x P_2$	4.64	3.37	0.004	0.56	0.35	-0.000
12	$P_1 \times P_3$	4.27	-4.44	-0.048	0.52	0.32	0.000
13	$P_1 \times P_4$	6.57	-3.97	0.016	0.45	-0.01	-0.000
14	$P_1 \times P_5$	5.33	5.11**+	-0.064	0.55	3.38	-0.000
15	$P_1 \times P_6$	4.35	2.74	-0.008	0.59	0.30	0.000
16	$P_1 \times P_7$	6.27	9.76	0.036	0.55	1.99	0.001*
17	$P_1 \times P_8$	5.41	12.36	0.071	0.59	1.43	-0.000
18	$P_1 \times P_9$	5.26	2.61	-0.024	0.60	2.06	0.000
19	$P_{1} \times P_{10}$	5.49	-5.73	-0.037	0.47	0.28	-0.000
20	$P_2 \times P_3$	4.17	-2.52	-0.032	0.53	1.31	-0.000
21	$P_2 \times P_4$	3.67	-5.66	0.020	0.31	0.43	-0.000
22	$P_2 \times P_5$	4.70	-2.84	-0.022	0.33	1.56	-0.000
23	$P_2 \times P_6$	4.21	4.02**++	-0.064	0.54	2.27	-0.000
24	$P_2 \times P_7$	4.07	-4.26	-0.049	0.58	2.44	0.000
25	$P_2 \times P_8$	3.97	-2.40	-0.034	0.61	-0.88	-0.000
26	$P_2 \times P_9$	4.16	-3.90	-0.061	0.45	-0.49	0.000
27	$P_2 \times P_{10}$	3.11	1.95	-0.035	0.68	-0.62	-0.000
28	$P_3 \times P_4$	4.10	2.71*	-0.064	0.49	-0.88+	-0.000
29	$P_3 \times P_5$	4.35	-5.52	-0.054	0.51	-0.06	-0.000
30	$P_3 \times P_6$	3.88	-2.34	-0.036	0.52	-0.32	-0.000
31	$P_3 \times P_7$	3.62	3.48*+	-0.064	0.54	1.12	-0.000
32	$P_3 \times P_8$	2.99	8.87	0.040	0.51	9.33	0.005**
33	$P_3 \times P_9$	3.41	3.23**+	-0.064	0.54	1.28	-0.000
34	$P_{3} \times P_{10}$	3.60	-4.38	-0.035	0.30	1.62	-0.000
35	$P_4 \times P_5$	5.72	0.70	-0.045	0.44	1.38	0.001**
30 27	$P_4 X P_6$	0.33	14.47	-0.039	0.60	-0.18	0.000
3/	$P_4 X P_7$ D x D	7.20	4.23	-0.055	0.58	0.20	0.000
38 20	$P_4 X P_8$	6.13 E 02	7.62	0.049	0.63	2.98	0.001**
39 40	$P_4 X P_9$ D x D	5.92	1.00	-0.002	0.57	-0.38	0.002**
40 41	$P_4 X P_{10}$ $P_4 X P$	7.28 5.40	2.66	-0.046	0.55	3.80 1.10	-0.000
41	$\Gamma_5 \times \Gamma_6$	5.49	2 72**	-0.031	0.42	1.19	0.000
42	$\Gamma_5 \times \Gamma_7$ D × D	5.81	1 20	-0.004	0.32	-1.52	-0.000
43	$\Gamma_5 \times \Gamma_8$ P × P	5.02	1.39 5.14	-0.020	0.49	1.10	0.002
44	$\Gamma_5 \times \Gamma_9$ P × P	5.93	-5.14	-0.038	0.51	0.03	0.000
46	$\mathbf{P} \mathbf{v} \mathbf{P}$	4 58	1 80	-0.000	0.55	2.00	-0.000
40 47	$F_{6} \times F_{7}$	7.50	-5 <i>41</i> *+	-0.040	0.44	2.07 1 9/1*	-0.000
-17 48	$P \mathbf{v} \mathbf{P}$	7.54	-0. 11 T 2 80	-0.004	0.44	16	_0.000
<u>10</u> <u>19</u>	$F_6 \wedge F_9$	4 95	_1 13	-0.057	0.54	1.10	0.000
50	$\mathbf{P} \mathbf{x} \mathbf{P}$	774	-6.01*+	-0.063	0.54	2.00	0.000
51	$P \times P$	4 33	2 34	-0.061	0.56	-1 65	_0 000
52	$P \times P$	6.36	2.99	-0.054	0.59	-0.61	0.000
	7 7 10	0.00	,_	0.001	0.07	0.01	0.000

Table 5. Stability parameters yield per vine (kg) and non-reducing sugar (%)Eberhart and Russel (1966)

Sl.	Genotype		Yield per vine (kg)			Non-reducing sugar (%)				
No.		μ_{i}	b _i	S ² d _i	μ_{i}	b _i	S ² d _i			
53	$P_{s} \times P_{q}$	6.42	4.17	-0.064	0.49	1.02*	-0.000			
54	$P_{8} x P_{10}$	6.94	1.55	-0.009	0.55	-0.74	-0.000			
55	$P_{9} \times P_{10}$	5.86	4.41	-0.055	0.57	0.45	-0.000			
56	Check 1	5.56	-2.35	0.027	0.46	-0.08	0.000			
57	Check 2	5.00	2.80**++	-0.064	0.28	3.58	0.001			
58	Check 3	5.38	-4.18*+	-0.064	0.53	3.54	0.001*			

Table 5. Continued ...

*, ** Significant at 5% and 1% respectively; +, ++ Significant deviation from unity at 5% and 1% respectively

Table 6. Stability parameters total sugar (%) and reducing sugar (%)Eberhart and Russe	el (1966)
--	-----------

Sl.	Genotype		Total sugar (%))	R	educing sugar (%)
No.		μ_{i}	b _i	S ² d _i	μ_{i}	b	S ² d _i
1	P.	1.56	0.15	-0.000	1.24	0.81	0.000
2	P_2	1.71	2.44	-0.000	1.28	-2.23	0.000
3	P ₃	1.62	2.33	0.000	1.25	-2.79	0.000
4	P	1.87	2.62	0.001*	1.35	0.35	0.001*
5	P_{5}^{*}	1.96	2.15	-0.000	1.35	1.85	-0.000
6	P ₆	1.81	-0.99	-0.000	1.39	-6.16	0.000
7	P_{7}	1.70	-0.70	0.001	1.24	-1.22	-0.000
8	P _s	1.58	0.77	-0.000	1.25	-4.30	0.000
9	P	1.92	-1.53	0.002*	1.41	-7.34	-0.000
10	P_10	1.77	0.77	-0.000	1.24	0.03	-0.000
11	$P_1 x P_2$	1.92	2.59*	-0.000	1.36	3.75	0.001
12	$P_1 x P_3$	1.85	0.26	0.001	1.33	1.16	-0.000
13	$P_1 \times P_4$	1.69	-0.98	-0.000	1.24	-1.17	-0.000
14	$P_{1}^{1} \times P_{5}^{4}$	1.98	0.95	-0.000	1.43	-4.17	0.000
15	$P_1 \times P_6$	1.90	4.59	0.000	1.32	-0.48	0.005**
16	$P_1 x P_7$	1.86	-1.31	-0.000	1.32	0.97	0.001**
17	$P_1 x P_8$	1.98	-1.82	0.000	1.39	1.36	0.002**
18	$P_1 \times P_0$	2.05	2.70	0.000	1.45	2.90	-0.000
19	$P_{1} \times P_{10}$	1.78	-3.24	0.000	1.32	-4.38	0.002**
20	$P_{2} \times P_{3}^{10}$	1.78	-0.80	0.000	1.25	3.91	0.001**
21	$P_2 x P_4$	1.55	-0.22	-0.000	1.24	1.15	-0.000
22	$P_2 \times P_5$	1.58	-2.30	-0.000	1.25	-4.21	0.002**
23	$P_2 \times P_6$	1.79	2.44	-0.000	1.25	0.03	-0.000
24	$P_{2} \times P_{7}$	1.74	1.42	0.001	1.16	1.53	0.000
25	$P_{a} \times P_{s}$	1.87	-0.47	-0.000	1.25	1.84	-0.000
26	$P_{2} \times P_{0}$	1.69	-0.18	0.000	1.24	1.50	-0.000
27	$P_{2} \times P_{10}$	2.00	2.92	0.001	1.32	11.01	0.000
28	$P_{a} \times P_{4}^{10}$	1.73	-0.69	-0.000	1.24	2.12	-0.000
29	$P_{3} \times P_{5}$	1.78	-3.17	0.001	1.27	-2.06	0.002**
30	$P_3 \times P_6$	1.75	-1.09	-0.000	1.23	1.26	0.000
31	$P_{3} \times P_{7}$	1.86	5.90	0.001	1.32	3.90	0.005**
32	$P_{a} \times P_{s}$	1.88	4.59	0.007**	1.36	-0.49	0.001
33	$P_{a} \times P_{a}$	1.79	-2.37	-0.000	1.25	-5.74	0.002**
34	$P_{3} \times P_{10}$	1.59	4.52	0.001	1.30	10.21	0.000
35	$P_4 \times P_5$	1.73	5.11	0.012**	1.28	21.65	-0.000
36	$P_4 \mathbf{x} P_6$	1.94	-0.88	0.000	1.33	-1.10	-0.000
37	$P_4 \times P_7$	1.85	2.88*	-0.000	1.27	0.85	0.001*
38	$P_{4}^{\dagger} \times P_{8}^{\prime}$	1.97	2.44	0.001*	1.34	2.82	-0.000
39	$P_4 x P_9$	1.98	-2.74	-0.000	1.40	2.57	0.001*

Tabl	e 6.	Continued	

Sl.	Genotype		Total sugar (%)		R	educing sugar (%)
No.		μ_{i}	b _i	S ² d _i	μ_{i}	b _i	S^2d_i
40	$P_{4} \times P_{10}$	1.81	-1.13	-0.000	1.26	-0.76	0.004**
41	$P_5 x P_6^{10}$	1.68	0.11	-0.000	1.26	-1.52	0.000
42	$P_5 \times P_7$	1.91	2.33	-0.000	1.39	1.90	0.003**
43	$P_{5} \times P_{8}$	2.07	8.20	0.000	1.58	-0.64	0.012**
44	$P_5 \times P_9$	1.98	-1.02	0.001	1.48	1.33	0.001*
45	$P_{5} \times P_{10}$	1.89	5.32	0.000	1.35	3.56	0.005**
46	$P_{6}^{3} \times P_{7}^{10}$	1.81	8.96	0.003**	1.37	5.69	0.012**
47	P x P	1.74	-1.71	0.002*	1.30	5.32	0.004**
48	P ₆ x P ₉	1.77	-0.62	0.000	1.28	8.85	0.000
49	$P_{6}^{0} \times P_{10}^{1}$	2.04	-1.90	-0.000	1.50	0.36	0.001**
50	$P_{7} \times P_{8}^{10}$	1.72	4.12	0.000	1.25	0.44	0.000
51	$P_{T} \times P_{0}$	1.83	1.02	-0.000	1.27	0.40	0.001**
52	$P_{7} \times P_{10}$	1.87	1.82	0.000	1.27	-3.28	0.002**
53	$P'_{s} \times P'_{o}$	1.72	0.47	-0.000	1.23	0.25	-0.000
54	$P_{s} \times P_{10}$	1.80	-1.49	0.000	1.26	0.64	0.000
55	$P_{0}^{'} \times P_{10}^{''}$	1.97	3.86	0.000	1.40	2.98	0.002**
56	Check 1	1.80	-1.24	0.000	1.34	-0.99	-0.000
57	Check 2	1.56	2.88*+	-0.000	1.28	8.87	0.000
58	Check 3	1.91	-1.06	-0.000	1.38	1.47	0.003**

brids $P_7 \times P_9$ (1.02) and $P_7 \times P_{10}$ (1.82) expressed stability under favorable environment for higher total sugars. Stability for reducing sugar only one hybrid $P_1 \times P_3$ (1.16) registered suitable and stable in favorable environment. In case of non-reducing sugar, six hybrids viz. $P_8 \times P_9$ (1.02), $P_6 \times P_{10}$ (1.05), $P_3 \times P_7$ (1.12), $P_3 \times P_9$ (1.28), $P_2 \times P_3$ (1.31) and $P_1 \times P_8$ (1.43) registered stable in favorable environment. Seven hybrids viz. $P_5 \times P_{10}$ (0.80), $P_5 \times P_9$ (0.63), $P_9 \times P_{10}$ (0.45), $P_1 \times P_2$ (0.35), $P_1 \times P_3$ (0.32), $P_1 \times P_6$ (0.30) and $P_4 \times P_7$ (0.20) expressed stability for unfavorable environment for non-reducing sugar.

References

- Balat, J.R., Patel, J.B., Delvadiya, I.R. and Ginoya, A.V. 2021. Stability analysis for fruit yield and its components in bottle gourd [*Lagenaria siceraria* (Mol.) Standl.]. *Biological Forum – An International Journal*. 13: 409-419.
- Cutler, H.C. and Whitaker, T.W. 1961. History and distribution of the cultivated cucurbits in the Americas. *American Antiquity.* 26 : 469-485.
- De Candolle, A.P. 1882. *Origin of Cultivated Species*, Hafner Publishing Company, London (Reprint (1967).
- Dhakare, B.B. and More, T.A. 2008. Stability analysis of yield and quality contributing characters in musk-

melon (*Cucumismelo* L.). *The Asian Journal of Horticulture*. 3 : 259-264.

- Eberhart, S.A. and Russell, W.A. 1966. Stability parameters for comparing varieties. *Crop Science*. 6 : 36-40.
- Jeffrey, C. 1990. Systematics of the Cucurbitaceae: an overview, In: Biology and Utilization of the Cucurbitaceae, Bates, D. M. et al., Eds., Ithaca, NY: Comstock Publishing Associates, pp. 3-7.
- Morimoto, Y. and Mevere, B. 2004. *Lagenaria Siceraria*. In: *Vegetables Plant Resources of Tropical Africa* 2. (Eds. Grubben, G.J.H. and Denton, O.A.). Backhuys Publishers, Wageningen, Netherlands, pp. 353–358.
- Panse, V.G. and Sukhatme, P.V. 1985. Statistical Methods for Agricultural Workers, Indian Council of Agricultural Research, New Delhi.
- Samadia, D.K. 2007. Stability parameters in bottle gourd. Indian Journal of Arid Horticulture. 2 : 20-23.
- Shaikh, J.A., Kathiria, K.B. and Acharya, R.R. 2012. Stability analysis for fruit yield and its component traits in bottle gourd. *Vegetable Science*. 39 : 89-91.
- Singh, S.P. 2008. Bottle gourd breeding. *Journal of New* Seeds. 6: 361-373.
- Tiwari, A. and Ram, H.H. 2009. Inheritance of fruit shape in bottle gourd (*Lagenaria siceraria* (Mol.) Standl.). *Vegetable Science*. 36 : 147-149.
- Varalakshmi, B., Manjunath, K.S. and Singh, B. 2018. Stability analysis for fruit yield and its component traits in bottle gourd [*Lagenaria siceraria* (Mol.) Standl.]. *Indian Journal of Plant Genetic Resource*. 31: 27-31.