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ABSTRACT

The success of genomic selection mainly depends on the extent of linkage disequilibrium between markers
and quantitative trait loci, size of training set, heritability of the trait etc. The extent of linkage disequilibrium
depends on the genetic structure of the population and marker density. This study was conducted to
determine the effects of marker density and size of training set on prediction accuracy using 1545 recombinant
inbred lines derived from eleven bi-parental rice populations. All RILs were genotyped with 6564 SNPs
and screened in two hot spot locations to assess reaction against sheath blight. Bayesian B model was used
to train the statistical model for calculation of marker effects and genomic estimated breeding values. To
evaluate the genomic prediction accuracy, various levels of training set size (300, 500, 700, 900 and 1200
lines) and marker density (500, 800, 1100, 1400, 1700, 2000, 4000 and 6000 markers) were considered. In our
study, the prediction accuracy increased with increase in training set size, however, average prediction
accuracy of 0.717 was obtained for the training set comprising of 900 lines before reaching plateau with
marginal increase in prediction accuracy with higher training set sizes. The predictive ability increased
dramatically with more SNPs included in the analysis until 2000 markers with average prediction accuracy
of 0.681, no significant improvement beyond this was observed. The results indicate that training set with
approximately 900 lines and 2000 uniformly distributed SNP markers with good amount of polymorphism
across populations would be enough to reach achievable accuracy to predict sheath blight resistance in rice.
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Introduction

Sheath blight is considered as one of the devastating
diseases of rice worldwide leading to significant
yield losses in many rice growing counties, it is
caused by a necrotrophic pathogen
Rhizoctoniasolani (Rao et al., 2020). Because of
unique symptoms exhibited by this disease it is re-
ferred as “rotten foot stalk”, “mosaic foot stalk” and
“snake skin disease” (Molla et al., 2020; Zhang et al.,
2019b).

The most economic and effective strategy in order
to control the disease is, development of cultivars
with resistance to sheath blight but only few variet-
ies are resistant and few reliable QTLs have been
discovered so far which are linked to sheath blight
resistance (Chen et al., 2019). Because of lack of good
number of authentic and reliable sources of resis-
tance, breeding for sheath blight has been challeng-
ing in Rice (Zuo et al., 2010; Srinivasachary, et al.,
2011). Upon intensive study sheath blight is believed
to be controlled by many quantitative trait loci scat-
tered across the genome (Zuo et al., 2013). It is
widely believed that quantitative nature of resis-
tance could be the expedient for evolving varieties
with durable/horizontal resistance (Heslot et al.,
2013).

When the target trait is complex, limited genetic
gain may be expected because genetics is controlled
by many genes with smaller effects, which means
many number of markers explain the genetic vari-
ance (Bernardo, 2008). In 2001, Meuwissen et al. pro-
posed the conceptof Genomic Selection (GS), which
assumes that many genomic regions contribute to
the genetic variance and each region is in LD (link-
age disequilibrium) with at least one known marker.
If SNPs markers are used, effects of all SNPs dis-
persed across the genome are estimated and used
for predicting genetic value of the selection candi-
dates. The GS has become more popular because of
advances in the genotyping technology which led to
reduction in the cost involved in high throughput
genotyping, thus remarkable improvement has been
observed in terms of selection accuracy and eventu-
ally helped in reducing breeding cycle and increase
in genetic gain. (Bhat et al., 2016; Meuwissen et al.,
2016; Crossa et al., 2017; Weller et al., 2017).

Besides the statistical models used for training the
dataset, the prediction accuracy may also be im-
pacted by marker density, genetic architecture of the
target trait, minor allele frequency, heritability,

training set size, LD between markers and QTLs etc.
Also the prediction accuracy can be increased by
usage of high density markers which are uniformly
distributed and cost effective genotyping technology
adds to it (Elshire et al., 2011). The current investiga-
tion was carried out to understand the effect of
marker density and size of the training set on pre-
diction accuracy so that a balanced strategy can be
followed for predicting sheath blight resistance
without making tradeoff among computational effi-
ciency, cost involved in phenotyping and prediction
accuracy for successful deployment of genomic se-
lection in practical plant breeding programs.

Materials and Methods

Parent material and phenotyping of F7 RILs for ShB

The material used for the existing study comprised
of 1545 RILs from eleven bi-parental populations
formed by crossingresistant lines with agronomi-
cally superior susceptible linesinvolving Jasmine 85,
Tetep & MTU 9992 as resistant parents and TN1,
Swarna-Sub1, II32B, IR54 & IRBB4 as susceptible
parents. The RILs were created by following single
seed descent method (SSD) at Rapid Generation
Advancement/ Speed breeding facility of Pioneer
Hi-Bred Pvt. Ltd. Research Centre at Tunkikalsa vil-
lage, Medak district, Telangana. The eleven crosses
utilized for the study were, Jasmine 85×TN1, Jas-
mine 85×Swarna-Sub1, Jasmine 85×II32B, Jasmine
85×IR54, Tetep×TN1, Tetep×Swarna-Sub1,
Tetep×II32B, Tetep×IR54, MTU 9992×TN1, MTU
9992×II32B and MTU 9992×IRBB4. All the RILs
were phenotyped for sheath bight reaction in two
hot spot locations (Seethanagaram and Draksharam)
of East Godavari District of Andhra Pradesh state,
India (Latitude 16008’ N and Longitude 81008’ E,
Latitude 17010’N and Longitude 81041’ E).

The experiments containing F7 progenies along
with parental lines were planted in Randomized
complete design with two replications. Row length
of 1.2 meter and spacing of 15 cm ×10 cm was con-
sidered to ensure dense population which is amiable
for the development of disease. TN1 was used as
susceptible check and was sown after every two
rows as well as all along the border to upsurge the
disease pressure as to serve as spreader rows. In the
current study, the virulent local East Godavari iso-
late of rice sheath blight pathogen was utilized for
disease screening. Before the inoculation, the fungus
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was cultivated in potato dextrose agar medium at
optimal temperature for 3–4 days, followed by
transferring of disc of medium with mycelia for in-
crease. To ensure rigorous screening for better dis-
ease development, artificial inoculation was done by
spraying the mycelia uniformly at the base of plant
at maximum tillering stage. The data was recorded
at peak milking stage to dough stage by visualizing
the relative lesion length to height (%) using 1–9
scale (SHBSC - Sheath blight score) based on devel-
opment of lesion from the lower to upper part of
plant on a scale from 1 (Resistant) to 9 (Susceptible)
thereby getting total of six phenotypic categories,
where score 1: no infection, score 2:1–20%, score 3:
21–30%, score 5: 31–45%, score 7: 46–65%, score 9:
66–100%.

SNP genotyping

All the RILs used for the study were genotyped us-
ing Infinium-XT marker platform which is a fixed
plex comprising of 6564 markers, the genotyping
was done at marker technology lab of Pioneer Hi-
Bred International Limited at Johnston, Iowa State,
United States of America.

GS modeling

Genomic selection follows a three-step process. First,
all the individuals which are part of training set are
genotyped and phenotyped and effects are esti-
mated for all molecular markers, GEBVs (predicted
values) were calculated for all the individuals which
are part of same training set using the marker effects
generated and were correlated with phenotypic val-
ues to get prediction accuracy, this is referred as
data fit analysis of training set. Second, the training
set is validated by considering independent data set,
different approaches of cross validation are used to
understand predictive ability of training set. Third,
members of untested populations are solely
genotyped and then selected based on their pre-
dicted phenotypes (GEBVs) according to the marker
effects estimated in the training set.

For the current investigation, Bayesian B model
was used for statistical analysis to generate marker
effects to get GEBV’s of the breeding lines.The statis-
tical analysis was done in “R” program with BGLR
package with 50,000 iterations.

Cross-validation method to study impact of marker
density(MD) on prediction accuracy

To evaluate the effect of marker density (MD) on the

accuracy of prediction, various levels of marker den-
sity were considered (500, 800, 1100, 1400, 1700,
2000, 4000 and 6000 markers) and in order to assess
the ability of genomic prediction for eachSNP set
with different density, ten-fold cross-validation
method was utilized. Wherein,1545lines were ran-
domly and evenly divided into 10 subsets. Oneof the
10 subsets was used as the validation set and
theremaining 9 subsets were used as the training set
(training and validation set comprise of 1390 and
155 lines respectively). GEBVs for the lines present
in the validation set were estimated using the
marker effects generated from training set with
Bayes B method. The predictive ability was assessed
by calculating the correlation between GEBVs and
phenotypic values for the lines present in validation
set.The procedure was repeated ten times ensuring
that each subset was used as validation set at least
once, finally prediction accuracy (correlation coeffi-
cients) values across ten-fold were averaged. The
ten-fold cross validation was repeated for all the
eight SNP setsconsidered with varying marker den-
sities.

Cross-validation method to study impact of
training set size (TSS) on prediction accuracy

To evaluate the effect of training set size (TSS) on the
accuracy of prediction, various levels of training set
sizes were considered (300, 500, 700, 900 and 1200
lines) with constant marker density (6564 markers)
and in order to assess the ability of genomic predic-
tion for each training set with different size of lines,
ten-fold cross-validation method was utilized.
Where lines present in each set were randomly and
evenly divided into 10 subsets. One of the 10 subsets
was used as the validation set and the remaining 9
subsets were used as the training set. GEBVs for the
lines present in the validation set were estimated
using the marker effects generated in training set
with Bayes B model. The predictive ability was as-
sessed by calculating the correlation between GEBVs
and phenotypic values for the lines present in vali-
dation set. The procedure was repeated ten times
ensuring that each subset was used as validation set
at least once, finally prediction accuracy (correlation
coefficients) values across ten-fold were averaged.
The ten-fold cross validation was repeated for all the
five training sets considered with varying sizes.

Results and Discussion

The frequency distribution of 1545 RILs evaluated
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showed continuous variation across all population
studied for sheath blight (Figure 1). The genotypic
analysis was done with large number of markers
which were uniformly distributed throughout the
genome (Table 1), polymorphic markers between
parents across populations studied ranged from
1407 to 2849, MTU 9992×TN1 and MTU
9992×IRBB4 possessed lowest and highest number
of informative markers (Table 2).

with MD = 4000, and 0.708 with MD = 6000.Predic-
tion accuracy improved as the MD increased, a
strong response to increase in marker density up to
2000 markers was observed with only a marginal
increase in prediction accuracy when increased from
2000 to 6000 markers. The results are summarized in
Figure 2. The box plot clearly disclosed that there
was high range of prediction accuracy values across
tenfold especially for lower MD datasets and values
were not consistent (Figure 3). Results indicated that
2000 markers were enough for generating a rela-
tively accurate prediction calibration within the
panel of lines used for the study.The results were
consistent with studies using smaller data sets
where additional markers benefited in enhancing
prediction accuracy when larger training sets were
used (Heffner et al., 2011a,b).

Fig. 1. Frequency distribution of sheath blight pheno-
typic scores

Effect of marker density (MD) on prediction
accuracy estimation

The effect of marker density on prediction accuracy
was assessed through random ten-fold cross valida-
tion with Bayes B model. The analysis was done
keeping the training and validation set size constant
(1390 and 155 lines respectively). The average pre-
diction accuracy across ten-fold cross validation ob-
tained was 0.336 with MD = 500, 0.443 with MD =
800, 0.471 with MD = 1100, 0.535 with MD = 1400,
0.625 with MD = 1700, 0.681 with MD = 2000, 0.698

Table 1. Summary of marker data used for analysis and
SNPs distribution on each chromosome

Chromosome SNPs Length (cM)

Ch1 639 181.8
Ch2 846 162.84
Ch3 598 164.04
Ch4 594 129.6
Ch5 583 128.58
Ch6 577 124.4
Ch7 457 118.6
Ch8 495 121.2
Ch9 427 93.1
Ch10 324 84.01
Ch11 541 117.9
Ch12 483 109.5
Total 6564 1535.47

Fig. 2. Line graph depictingaverage prediction accuracies
of different levels of marker densities studied with
Bayes B model

Effect of training set size (TSS) on prediction
accuracy estimation

The effect of training set size on prediction accuracy
was evaluated through random ten-fold cross vali-
dation with Bayes B model. The analysis was
performedkeeping the marker density (MD) con-
stant (6564 markers) and all the SNPs were used for
prediction. The average prediction accuracyacross
ten-fold cross validation obtained was 0.468 with
TSS = 300, 0.577 with TSS = 500, 0.678 with TSS =
700, 0.717 with TSS = 900, and 0.722 with TSS =
1200. The results are summarized in Figure 4.The
box plot clearly revealed that there was range of pre-
diction accuracy values across tenfold for each TSS
and values were not consistent (Figure 5).Prediction
accuracy increased as the TSS increased, a sharp in-
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crease in accuracy was found before reaching a pla-
teau at TSS approximately 900 lines, with only a
marginal increase in prediction accuracy when TSS
increased from 900 to 1200 lines. It indicated that a
training set with approximately 900 lines can pro-
vide the maximum achievable accuracy, hence re-
source allocated for phenotyping could be reduced
with optimum size of training set. This result con-
firms previous findings from smaller populations
(Heffner et al., 2011a, b; Isidro et al., 2015), and ex-
tends the relationship to larger training sets showing
there is a point at which accuracy begins to plateau
in response to increased training set size (Adam et
al., 2018).

Conclusion

From the current investigation we could observe

Table 2. The informative markers available across the genome for each population used for analysis

Populations Number of RILs Total Markers Polymorphic Markers

Jasmine 85/TN1 121 6564 2522
Jasmine 85/Swarna-Sub1 139 6564 2627
Jasmine 85/II32B 144 6564 2586
Jasmine 85/IR54 161 6564 2663
Tetep/TN1 221 6564 2806
Tetep/Swarna-Sub1 158 6564 2278
Tetep/II32B 241 6564 2702
Tetep/IR54 94 6564 2796
MTU 9992/TN1 50 6564 1407
MTU 9992/II32B 122 6564 2314
MTU 9992/IRBB4 94 6564 2849
Total 1545

Fig. 4. Line graph depictingaverage prediction accuracies
of different levels of training set sizes studied with
Bayes B model

Fig. 3. Box plot depicting ten-fold cross validation results
of different levels of marker densitiesstudied with
Bayes B model

Fig. 5. Box plot depicting ten-fold cross validation results
of different levels of training set sizes studied with
Bayes B model
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that there was a point at which prediction accuracy
begins to plateau in response to training set size, and
this response was independent from the genetic
complexity of the trait. Also, we detected that the
response to increased marker density was larger
when using a diverse training set and predicting
from poorly related training sets. This indicates that
the high-density genotyping platforms are need of
the hour for successful deployment of genomic se-
lection for complex traits like sheath blight whose
inheritance is governed by multiple genes. The in-
vestigation provides great idea for pragmatic plant
breeders to optimally design their genomic selection
strategy to achieve high selection accuracy and sub-
sequent rates of genetic gain.
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