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ABSTRACT

The spatial distribution of precipitation is a key data for the prevention and management of extreme events
that threaten the Assaka watershed. This area is characterized by a scarcity of climatological data, an unevenly
distributed rainfall observation network and low density. However, spatial interpolation methods of point
precipitation measurements could overcome these aspects. For this reason, this research consists in
determining the most adequate method in terms of efficiency and practical use in order to accurately map
the maximum daily precipitation for a period of 30 years (1990 -2020). In this context four interpolation
techniques (Thiessen polygons, inverse distance weighting, ordinary kriging and linear regression) were
applied in a GIS environment. The cross-validation allows to evaluate the global performance of each
method using statistical indicators (RMSE, MAE) as well as adjustment diagrams between observed and
predicted values. Indeed, this analysis has allowed to qualify the method of multiple linear regression
(MLR), as the best interpolator (RMSE=1.67mm and MEA=1.40mm). These results are judged by the fact
that this technique integrates geographical factors (topography, latitude, proximity to the ocean) related to
the formation of precipitation in the study area. Other methods are considered unsuitable in this anisotropic
environment where the density of observation points is very low. These results constitute exploitable
approaches by scientists and decision-makers in the prevention and management of extreme events (floods,
landslides, water erosion) as well as land management (water resources, agriculture and environment).
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Introduction

In the field of prevention and management of ex-
treme events, accurate precipitation mapping is of
great importance, as it represents a key data for hy-
drological modeling and simulation of climatic sce-
narios necessary for the prevention of natural haz-
ards such as floods, hydraulic erosion, desertifica-
tion, and land movements (Caloiero et al., 2021).
However, these phenomena are often studied in
very large areas where direct rainfall measurements
from rainfall stations are spotty and poorly distrib-
uted. Therefore, a discrete spatial knowledge of ex-
treme rainfall events is insufficient, or difficult to
visualize (Joseph et al., 2017). The observed values
therefore need to be spatially interpolated if the
“surface” rainfall is to be accurately known. Spatial
interpolation is then the procedure that allows a
continuous estimate over a territory from known
observed neighbouring values (Mitas and Mitasova,
1999). A map with isolines that optimally estimate
will therefore be the main objective of this process
that plays a major role in decision making
(Pellicone, 2018; Di Piazza et al., 2011). In the litera-
ture, interpolation methods for rainfall spatialization
are numerous, as well as of very variable complex-
ity and efficiency (thiessen polygons, trend surfaces,
splines, inverse distance weighting, geostatistical

methods, artificial neural network and multiple re-
gression ...). We therefore propose in this compara-
tive study to determine the most suitable spatial in-
terpolation method for the Assaka watershed, in
terms of representativeness of the rainfall phenom-
enon, but also in terms of ease of use and reliability,
with the aim of better knowledge and forecasting of
intense rainfall events.

Presentation of the study area

The Assaka watershed, the subject of this study,
which is located in the south of Morocco, in the
Geulmim-Oued Noun region. It occupies an area of
6866 Km2, corresponding to a perimeter of 750 km.
It is located geographically between the two paral-
lels 28.54° and 29.47°N and the two meridians 10.42°
and 9.02°W (Fig. 1).

However, this study area is characterized by a
severe aridity, due to the presence of the High Atlas
Mountain range, which hinders rainy disturbances
from the north. The average annual temperature is
about 21 °C in Guelmim (Station Guelmim), while
the average annual rainfall is about 115 mm, with a
very significant random irregularity in the water-
shed. This fluctuation of rainfall in recent years, is
the cause of the worsening of floods that have
caused human damage, and very costly material in
the watershed of Assaka (El Mahmouhi et al., 2016).

Fig. 1. Distribution map of rainfall stations in the vicinity of the Assaka watershed
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Materials and Methods

Work methodology flowchart

The methodology adopted in this study consists of
evaluating the performance of four of the most
widely used interpolation methods in the field of
climatology, in order to produce a low spatial distri-
bution map of daily maximum precipitation for a
10-year return period (Fig. 2). This approach is
based on daily precipitation data from 9 rainfall sta-

tions, for a period of 30 years (1990-2020). These
data were provided by the Hydraulic Basin Agency
of Draa Oued Noun (HBADON).

Although these series are spread over long peri-
ods of time (since 1975), it should be noted that they
contain a large number of intervals without mea-
surements, hence the interest in going through static
processing of these data, in order to fill measure-
ment gaps and eliminate all aberrant acquisitions.
The analyses, statistical treatments and matrix corre-

Fig. 2. Flowchart of the adopted methodology presenting the approach of the study

Table 1. Characteristics of the 9 rainfall stations in the study area

Measuring stations Coordinates Elevation Obeservation Year of
X (m) Y (m) (m) periods (year) registration

Ain rahma -400 220850 70 1975 - 2020 45
Assa 107333 186790 370 1992 - 2020 28
Assaka 27700 240600 145 1983 – 2020 37
Bouizakarne 81000 250700 630 1989 – 2019 30
Guelmim 46000 230000 270 1973 – 2015 42
Ifrane 102000 254000 800 1989 – 2018 29
Pont_Draa -42929 183398 58 1981 – 2012 31
Sidi ifni 36000 273000 59 1971 - 2020 49
Tghjijt 108100 236800 591 1975 - 2020 45
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lations were performed using the XLSTAT tool. The
spatial interpolation methods were applied in a GIS
environment (ArcGis 10.4).

Presentation of rainfall data

Rainfall information on the surface of the study area
comes from 9 rainfall covering variable periods from
1975 to 2020 (Table 1). They are relatively dense in
the north and very sparse in the south of the Assaka
basin (Fig. 1).

It is very important to mention the existence of
discontinuities and gaps in the measurement series.
The common monthly period between the stations is
about 30 years (since 1990).

Statistical analysis of rainfall data

For an effective use of rainfall data, the primary
analysis of these series is essential. It allows to con-
trol the plausibility of the information on the one
hand and the spatial and temporal homogeneity of
the data and the representativeness of the measure-
ments on the other hand (López-Rodríguez et al.,
2019).

Review of precipitation normality

To know if this sample of 30 values follows the nor-
mal distribution, we used the Henry diagram. The
latter allows it possible to assess the adequacy of an

observed distribution (annual precipitation) to a
normal distribution (Gaussian distribution), which
will allow detecting where the deviations are lo-
cated (Crépel, 1993). Thus, quantification of this nor-
mality using the Kolmogorov-Smirnov (K-S) test is
still essential, in order to determine the probability
of acceptance of the hypothesis that the distribution
of annual values follows a normal distribution
(Hassani et al., 2015).

In addition, the examination of normality adjust-
ment (Kolmogorov-Smirnov (K-S) test) confirms a
probability value (p-value) of 0.749 and 0.799 re-
spectively for the stations: Sidi Ifni and Taghjijt.
These values are well above the alpha threshold
=0.05.

Homogenization and estimation of missing data

This step consists in checking the homogeneity of
the measured values of the station to be tested by
correlating them with those of reference, that is why
it is necessary to seek good coefficients of correlation
existing between the stations of reference and the
other neighboring ones, on the basis of the monthly
water heights, with the aim of reducing the estima-
tion error of missing measurements (Kessabi et al.,
2022). These two reference stations (Tghjijt and
Sidiifni) were chosen based on their long observa-
tion period (1971-2020). Inaddition these stations

Fig. 3. Adjustment of maximum daily precipitation measurements for a 10-year return period by Gumbel’s law
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showed the most significant correlations with the
other stations (0,76  R2  92).

Adjustment of maximum daily rainfall to Gumbel
distribution

For the prediction of extreme values of precipitation,
we use Gumbel’s law (Gumbel, 1960) which pre-
sents a distribution function with the advantage of
simplicity of calculation and the possibility of iden-
tifying the temporal distribution of extreme values
for several return times (Abu Hammad, 2022).

The application of the Gumbel frequency analysis
was performed in the XLSTAT tool, which allows
the calculation of the annual maximum of the total
precipitation on 4 consecutive days of each rainfall
station, for a return period of 10 years. We present
the adjustment results of four stations for illustrative
purposes (Fig. 3). They show a relatively adequate
fit to the Gumbel law. In addition, the chi-square test
accepts this adjustment at the 5% threshold.

Application of spatial interpolation methods

In literature one can find a multitude of spatial inter-
polation methods, ranging from the most basic to
the most advanced (Borges et al., 2016).

The first category includes deterministic/statisti-
cal interpolation methods (Splines, Thiessen poly-
gons, inverse distance weighting, trend surfaces and
multiple regression...) based on the application of
polynomial mathematical functions, weighting or
statistical analysis, which allow to interpolate
known measurement points in space. However, the
second category of probabilistic methods (Kriging,
Co- Kriging and artificial neural network...), model
the regionalized variable by a random function or
still use backpropagation algorithms for probabilis-
tic type learning (Paraskevas et al., 2014; Cerón et al.,
2021).

This study does not consist in making an exhaus-
tive presentation of each interpolation method. In-
deed, we have chosen to evaluate four methods
most commonly used in the development of precipi-
tation maps (Thiessen polygon method, Inverse dis-
tance weighting, multiple linear regression and ordi-
nary kriging)

Thiessen polygon method

The principle of this technique is to assign to each
observation (rainfall station) a polygon of influence,
constructed so that each point of the polygon is
closer to its observation site than to any other site.

The polygons are obtained by drawing the bisectors
of the segments connecting the observation sites
(Thiessen, 1911). The result of this method depends
only on the spatial distribution and density of the
observation sites. It yields small area polygons for
clustered data, in contrast to isolated data that will
produce large area polygons (Olawoyin and
Acheampong, 2017). This method assumes that each
precipitation gauge does not have the same weight,
and for each observation in a watershed one can as-
sign precipitation equal to that of the nearest gauge
by constructing influence polygons.

If Ai is the area assigned to station i, then the area
precipitation can be estimated as follows (equation
1)

.. (1)

: the area average of precipitation

: the observed precipitation at this station or
outside the watershed.

: part of the polygon area surrounding station
i located in the region.

M : the number of areas

Inverse Distance Weighting (IDW) method

It is a deterministic method commonly used in the
spatial interpolation of climate data. This classic
technique consists in calculating, for each point to be
estimated, the average of the experimental values of
its neighbors, favoring the closest points. The
weighting factors are therefore calculated propor-
tionally to the inverse of the distance (Lu and Wong,
2008). The general formula is expressed as follows
(equitation 2):

.. (2)

With :

 : The estimated value of Z in S0

: The weight of Z (si)

n : The number of measurements used for the es-
timate

Then the weights are calculated as follows (equi-
tation 3):

                        .. (3)

Where diis the distance between S0 andSi ,
withPbeing a power parameter.
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From the mathematical expression of this
method, it is clear that the main parameter that de-
fines the quality of the results is the power factor
(Nalder and Wein, 1998).

Ordinary kriging method

Ordinary kriging is a probabilistic technique most
used in geostatistics. It is a linear estimation method
guaranteeing the minimum variance. Kriging per-
forms the spatial interpolation of a regionalized
variable using statistical adjustments through a
semi-variogram that allows evaluating the spatial
autocorrelation of the observation points (Dobesch
et al., 2007).  The method, in general, is built in 5
steps: i) exploratory analysis of the data; ii) construc-
tion of an experimental variography; iii) elaboration
of a variogram model; iv) choice of the interpolation
method (ordinary kriging in this case); v) evaluation
of the quality of the interpolation by a cross valida-
tion. Since, the construction of the variogram is the
most important step of a geostatistical study because
it is from this that the spatial continuity can be mod-
eled.

The experimental variogram is calculated empiri-
cally from the observations of the regionalized vari-
able. This is why by admitting that the semi-
variogram function y(x,h) depends only on the
translation vector h and not on the point x for the
study of the regionalized parameters of precipita-
tion. The formulation to estimate this variogram is
(equation 4):

    .. (4)

With:

 : semivariogram
E: mathematical expectancy.

Table 2. Variogram model parameters and statistical criteria for cross-validation to develop a maximum precipitation
map

Variogram model parameters Statistical parameters of the cross-validation
Parameter Model Nugget Sill Range Mean Root Average

effect (m2) (m) Standardized meansquare Standard
(m2) Error error   Error

Expression Gaussian :
y(h)=[1–exp(–3(h/a)2] C0 1 a

Results - 9.48 150.1 140943 0.106 4.02 6.56

Explanation: N: number of samples; Z: real value of the variable; Z*: estimated value of the variable; : The standard
deviation

Z(x) : random variable representing z(x)
Z(xi) – Z(xi + h) : two measurements of the studied

variable located at any two points distant from the
vector h

N(h) : number of pairs of points distant from h,
equal to n(n-1)/2, n being the number of measure-
ment points of Z.

The experimental variogram allows the estima-
tion of the theoretical variogram for a defined num-
ber of distances, ie only point values. Moreover, it
does not necessarily respect the theoretical proper-
ties of the variogram. The idea is therefore to adjust
a classic variographic model presenting the neces-
sary characteristics and defined for a set of elements
(Ly et al., 2011).

Then, the kriging, allows to provide a better lin-
ear estimator, without bias and with a minimum
estimation variance (Goovaerts, 2000). In this case
we use ordinary kriging because it is the most robust
to stationarity errors. For this method, let us suppose
that we want to estimate a block v centered at the
point xi. Let us note Zv the true (unknown) value of
this block and Zv the estimator that we obtain (equa-
tion 5).

                                              ..  (5)

With: i: is the weight to be assigned to the data
Z(xi) for i =1, ..., n. It is the interpolation algorithm
that determines the value of the weights.

The Geostatistical Analyst tool of ArcGis 10.4 al-
lowed us to carry out all the steps mentioned above,
from adjusting the model to spatial interpolation
using ordinary kriging. Table 2 presents the model
parameters as well as the statistical criteria for the
cross-validation.
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Multiple linear regression method

The multiple regression method is a statistical tech-
nique that expresses the relationship between sev-
eral independent variables and the dependent vari-
able. This technique has shown very satisfactory re-
sults in rainfall mapping, because it takes into ac-

count the factors influencing the spatial distribution
of rainfall (elevation, longitude, latitude, distance to
the ocean, exposure and slope) (Hay et al., 1998; Yun
et al., 2009). The MLR model consists of finding the
relationship between the dependent value (y) and
several independent variables (xi), using the follow-
ing expression (equation 6):

Fig. 4. Maps of total daily maximum precipitation (1990 – 2020) for a return period  of 10 years
according to the different spatial interpolation methods

Table 3. Regression model for the annual maximum total precipitations over 4 consecutive days for a 10-year return
period

Source Regression Standard t Pr > |t| Terminal Source
coefficient error

Z 0,2324 0,0057 1,3516 0,2344 0,0196 0,0677
Y 0,9595 3,8933 1,5155 0,0729 -2,2208 14,0219
d_ocean -0,4424 0,00004 -2,2654 < 0,0001 -0,0008 -0,0006
Model parameters Value Model expression (Eq. 7)
R² 0,9650
R² adjusted 0,9439
MSE 5,0576 Pdmax_10 yrs= -738,247 + 0,0076*Z + 26,7208*Y - 0,0001*d_ocean
RMSE 2,2489
F 45,8898
Pr > F < 0,0005

Explanations:  Z- elevation of station, X- Longitude, Y- Latitude, d_ocean- Proximity to the ocean Atlantic, Pdmax_10
yrs- Annual maximum total precipitations over 4 consecutive days for a 10-year return period, R²- coefficient of deter-
mination, MSE- Mean squared error, RMSE- Root Mean Square Error, F- Fisher test, t- coefficient divided by its stan-
dard error, Pr- statistical test
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y = C + 1x1 + 2x2 +3x3 + ... kxk .. (6)

Where y: denotes the dependent variable; i

(i=1,2,...,k) represents a regression coefficient for the
independent variables xi (i=1,2,...,k), and C: is a con-
stant of the regression.

In the context of this study area, the testing of a
hypothesis that determines, among the parameters
mentioned above, those that best explain the spatial
variation of precipitation. The explanatory variables
are: Station elevation: Z; Longitude: X; Latitude: Y
and proximity to the Atlantic Ocean: d_ocean.

We present here the modeling of extreme daily
rainfall for a return period of 10 years (Pdmax_
10yrs). We start by evaluating the correlation be-
tween all the parameters, then we apply stepwise
regression, using the XLSTAT tool. Table 3 presents
the selected model equation and the adjustment pa-
rameters (equation 7).

Results and Discussion

Presentation of maximum precipitation maps for
the period 1990-2020

The extreme rainfall event was spatially interpo-
lated using the four spatialization methods from
data collected by the 09 rain gauges during the pe-

riod 1990 -2020 in the Assaka watershed (Fig. 4).
These maps represent extreme daily rainfall for a
return period of 10 years. Indeed, the spatial distri-
bution of rainfall increases from south to north in
the four interpolation methods with a minimum of
18.7 mm and a maximum of 52.8 mm. These results
suggest that rainfall in the Assaka watershed is in-
fluenced by topography, which also increases from
south to north, as well as latitude.

The inverse distance weighting (IDW) method il-
lustrates circles around the measurement points
(rain gauge stations), which reflects the fact that this
technique depends greatly on the location of the
data in relation to the node considered. In addition,
the geostatistical interpolation method (ordinary
kriging) shows a progressive graduation of precipi-
tation that increases from south to north, which re-
flects certain “field logic” especially the influence of
latitude. Concerning the Thiessen polygon method,
we can clearly see the polygonal division of the ba-
sin into a number of distinct territories, centered on
the measuring stations, this method suggests a total
absence of rainfall graduation in space. However,
the multiple linear regression method appears to be
more representative because it has taken into ac-
count micro-scale changes in extreme precipitation.

Fig. 5. Diagrams of adjustment of the observed values compared to the predicted values of the maximum daily
precipitation for each interpolation method
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These are influenced by topography, latitude and
distance from the ocean. All of these criteria were
considered as independent variables for the mul-
tiple regression models to obtain a more accurate
spatial distribution of precipitation.

Evaluation of Spatial Interpolation Methods (cross
validation)

In order to evaluate the performance of the interpo-
lation methods used in this study, cross-validation is
the best known method. The latter consists in mak-
ing a comparison between the observed values
(rainfall stations) and the predicted values. The prin-
ciple of this method is based on the fact of predicting
at each known point the value from the
neighbouring points, in order to calculate for all the
observation points the errors between the predicted
and observed values. The global evaluation of the
performance of the interpolator is estimated by
means of several statistical performance drivers. In
this case we use two indicators, namely the root
mean square error (RMSE) and mean absolute error
(MAE). Their mathematical expressions are (equa-
tions 8 and 9).

.. (8)

.. (9)

With: N: number of samples; Z: actual value of
the variable; Z*: estimated value of the variable

The calculation of the statistical performance in-
dicators for the three interpolation methods is as fol-
lows (Table 4).

The comparative analysis of the selected interpo-
lation methods, both by visual analysis in Figure 4
and by cross-validation in Table 4, shows that not all
models produce satisfactory estimates. This finding
may be related to the low density of the rain gauge
network in the area. For the Thiessen polygon
method, its performance cannot be evaluated by the
statistical indicators mentioned above, because this

geometric method is based only on the distribution
of stations, in order to assign a precipitation equal to
that of the nearest gauge by drawing up influence
polygons. The overall picture of this technique is far
from being representative of reality. However,
cross-validation showed that the MLR method per-
formed better than the other two methods
(RMSE=1.67 mm and MEA =1.40 mm), because this
technique incorporates the relationship between
precipitation and geographical site factors. In sec-
ond place we find the O.K method, with a perfor-
mance indication slightly lower than that of the
MLR method (RMSE=4.02 mm and MEA =3.02mm).
In addition, the deterministic IDW method still
shows a lower representation quality in this study
(RMSE=9.04 mm and MEA =7.55mm).

Another way to visualize certain trends between
observed and predicted daily maximum precipita-
tion, for the last three spatial interpolation methods
(Fig. 5). This technique also illustrates that the MLR
method and the O.K method show a strong linear
correlation between predicted and observed precipi-
tation, while the IDW method shows almost no cor-
relation.

Conclusion

The fundamental interest of this work was to find
the best method to spatialize the maximum daily
rainfall in the Assaka watershed. The results
showed that the extreme rainfall regime at the level
of this study area is strongly influenced by the geo-
graphical factors of the site (Mountain, latitude and
distance from the Atlantic Ocean). Indeed, the MLR
statistical modeling method showed a better spatial
prediction of extreme rainfall with a very low num-
ber of rainfall stations, which confirms that the sec-
ondary variables that condition the formation of
rainfall have a great advantage in improving the re-
sults. these latter are considered encouraging for use
in land use planning (water resources management,
agriculture, environment), prevention and manage-
ment of extreme events (floods, landslides, water
erosion ...) which are based mainly on accurate pre-
cipitation mapping.

In this context this work must be considered as
the first step of an interesting research perspective
towards an improvement of the results, by integrat-
ing the data of the radar satellite imagery and their
coupling with the ground measurements.

Table 4. Cross validation performance of different inter-
polation methods

Interpolation methods
Multiple linear Ordinary Inverse distance

regression  kriging   weighting

RMSE 1.67 4.02 9.04
MAE 1.40 3.02 7.55
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