Efficacy of *Rauvolfia tetraphylla* Leaf extracts against the Vector of Lymphatic *Filaria culex quinquefasciatus*

Radhakrishna S. Pandit¹ and Kishor D Raut²*

¹Department of Zoology, Savitribai Phule Pune University (University of Pune), Ganesh Khind, Pune 411 007, M.S., India
²Ross Lifescience Pvt. Ltd., Bhosari, Pune 411 026, M.S., India

(Received 2 January, 2022; Accepted 9 February, 2022)

ABSTRACT

The *Rauvolfia tetraphylla* leaf extract with different solvents n-hexane, chloroform, acetone and methanol were tested for larvicidal, ovicidal, oviposition attractant/deterrent activities. Their effect on larval nutritional reserve against *Culex quinquefasciatus* was also studied. Larval mortality was observed after 24 hours exposure. The LC₅₀ values for n-hexane, chloroform, acetone, methanol extracts are 16.80, 91.56, 214.85, 44.68 ppm, respectively. The mean percentage hatchability of the ovicidal activity was observed 48 hours post treatment. For *R. tetraphylla*, methanolic extract exhibited 56 % egg hatchability at 125 ppm. The effective oviposition repellency was 100 % at 320 ppm and the oviposition activity index value -1 was shown by n-hexane extract of *R. tetraphylla*. The fourth instar of *C. quinquefasciatus* where exposed to LC₅₀ concentration of extracts and its on larval nutritional reserves was checked. All extracts showed moderate effect on larval nutritional reserves, i.e. changes in total concentration of sugar, glycogen, lipid and protein. The average values of total sugar, glycogen, lipid and protein are 9.47, 32.32, 54.50, 183.35 µg/larvae was found in fourth instar larvae of *C. quinquefasciatus*. From the all-leaf extracts, the methanol extract affects the total sugar, lipid; n-hexane extract to glycogen and acetone extract to protein of fourth instar larvae of the mosquito and decreases up to 3.39, 20.71, 11.18, 91.05 µg/larvae, respectively. These results reveal that the *R. tetraphylla* leaf extracts have the control potential against *C. quinquefasciatus*.

Key words: *Rauvolfia tetraphylla*, *Culex quinquefasciatus*, Larvicidal Activity, Ovicidal activity, Ovipositional activity.

Introduction

Mosquitoes transmit diseases like malaria, Japanese encephalitis, yellow fever, dengue and filariasis that are major causes of human mortality world wide. No part of the world is free from vector-borne diseases and mosquito-borne diseases currently represent a significant health problem in tropical and subtropical countries (Fradin and Day, 2002). *Culex quinquefasciatus* mosquito is generally known as the Southern House mosquito and a vector for many an arbovirus responsible for lymphatic filariasis, West Nile virus, St. Louis encephalitis (Udonsi, 1986; Rajasekariah et al., 1991). Lymphatic filariasis, endemic to India, caused by *Wuchereria bancrofti* is transmitted by mosquito *C. quinquefasciatus*. *W. bancrofti* is the predominant filarial nematode, causing filariasis usually characterized by progressive debilitating swelling at the extremities (Myung et al. 1998). The most common approach to control insect vectors is the use of chemical pesticides and insecticides. Their repeated use has disrupted natural bio-
logical control systems, led to development of resistance to the chemicals, with undesirable effects on non-target organisms, raising concern about the environment and human health (Brown, 1986; Thomas et al., 2004). The drawbacks of the synthetic chemicals have renewed interest in the search of eco-friendly, safer and cheap plant derivatives. The plant extracts and phytochemicals are usually pest specific, easily biodegradable, generally risk free, and an effective mosquito control agent (Bowers, 1992). Many plant products mean of potential mosquito control agent have been reported that are larvicidal, repellents, oviposition deterrent and growth inhibitors (Rajkumar and Jebanesan, 2005; Pushpanathan et al., 2006; Isman, 2000). The present work systematically investigates the larvicidal, ovicidal, oviposition attractant/deterrent and nutritional reserves effect of *R. tetraphylla* leaf solvents extracts against *C. quinquefasciatus*.

R. tetraphylla L. (Apocynaceae) is commonly known as devil-pepper or be still tree. In Sanskrit, it is known as Vanasarpagandha and Sarpanasini. It is a small erect woody shrub. It is native to West Indies that was introduced in India. It has become naturalized in many localities. Medicinally, *R. tetraphylla* plant extract mixed with castor oil is used for chronic refractory skin diseases and destroys parasites. The root is also used to stimulate uterine contraction and is recommended for use in difficult child birth (Villar et al., 1998; Parrotta, 2001). Pharmacologically the roots of *R. tetraphylla* contain alkaloids, like Reserpine, Ajmaline and Tetraphyllicine which possess hypotensive property (Faisal et al., 2005). Shariff et al. (2006) reported the antimicrobial activity of the chloroform extract of *R. tetraphylla*.

Materials and Methods

Rearing of Mosquito colony

C. quinquefasciatus larvae were obtained from National Chemical Laboratory, Pashan, Pune. The larvae were maintained at 75 – 85% relative humidity & 27 ± 2 °C temperature. The larvae were fed dry yeast powder and dog biscuit in 1:3 proportions. Pupae were kept in 60×60×60 cm wire mesh cage for adult emergence. The 10% sucrose cotton swab was provided as food for adult mosquitoes. The adult female mosquitoes of *C. quinquefasciatus* were fed on the blood meal of hen.

Plant material collection and extraction

Fully developed leaves of the *R. tetraphylla* were collected from in and around Pune University campus, Pune, Maharashtra, India in September 2010. It was authenticated by Botanical Survey of India (BSI), Western regional office, Pune, India. Voucher specimen was deposited at the BSI, Pune. The leaves were collected, washed with tap water and shade-dried at room temperature. The dried material was finely ground and exposed to Soxhlet apparatus for extraction. The finely ground plant leaf powder was extracted with four different solvents, namely, n-Hexane, Chloroform, Acetone and Methanol, individually (Vogel, 1978). The rotary vacuum evaporator was used for removing solvents from extracts and to collect the crude extract. The standard stock solution (1%) was made by dissolving the residues in acetone. Test concentrations were prepared and used for larvicidal, ovicidal, ovipositional attractant/deterrent properties and its effects on nutritional reserve of larvae.

Larvicidal bioassay

The larvicidal bioassay was carried out by Standard method recommended by World Health Organization (WHO) (2005). Batches of 25 forth instar larvae were transferred to disposable test cups, each containing 150 ml of water in the cups to obtained desired target concentrations, starting with the lowest concentration. Doses ranged from 10 – 200 ppm. For each concentration, five replicates were taken; controls were set using tap water with acetone. A pinch of larval food was provided to test larvae and mortality was recorded after 24 h. Data obtained was subjected to probit analysis (Finney, 1971) and LC₅₀ and LC₉₀ values were calculated.

Ovicidal bioassay

Ovicidal bioassay was performed by the procedure of Govindarajan et al. (2011). The egg rafts of *C. quinquefasciatus* were exposed to various concentrations ranging from 25 – 125 ppm of leaf extracts. The egg rafts which have around 100 eggs are used for treatment for four hours. After treatment, the egg rafts were individually transferred to distilled water cups for hatching assessment. The total number of eggs and hatched eggs were counted under dissecting microscope (Olympus, Magnus MSx×24). Each experiment was replicated five times along with appropriate control. The hatch rates were assessed.
48 h post treatment by following formula.

\[
\% \text{ of egg hatchability} = \frac{\text{No. of unhatched eggs}}{\text{Total no. eggs}} \times 100
\]

Oviposition Attractant/Deterrent assay

For this assay, the double choice method was used. For this assay, 30 males and 30 females were separated in the pupal stage and were introduced into screen cages (60×60×60 cm). The pupae were allowed to emerge into adults in the test cages. Adults were fed on 10 % sucrose solution in plastic cup with a cotton wick. They were blood fed (from hen) five days after emergence. In the double choice method, two cups each contains 100 ml distilled water were kept in cage (one treated with test material and other with solvent as control). During replication, position of cups was alternated so as to nullify any effect of position on oviposition. After 24 hours, the no of eggs laid in treated and control cups were counted under dissecting microscope (Olympus Magnus, MS×24). The five replicates for each concentration were run. The percentage effective repellency for each concentration was calculated by,

\[
\text{ER} \% = \frac{\text{NC} - \text{NT}}{\text{NC}} \times 100
\]

Where, ER = effective repellency, NC = total no. of eggs in control, NT = total no. of eggs in treated cups (Rajkumar and Jebanesan, 2009). The oviposition experiments were expressed as mean number of eggs and Oviposition Activity Index (OAI) which was calculated using the following formula.

\[
\text{OAI} = \frac{\text{NT} - \text{NS}}{\text{NT} + \text{NS}}
\]

Where, NT = total no. of eggs in test solution, NS = total number of eggs in the control solution. Oviposition activity index of + 0.3 and above are considered as attractants while those with − 0.3 and below are considered as repellents (Kramer and Mulla, 1979).

Quantification of Nutritional Reserves

The nutritional reserves consist of sugar, glycogen, lipid and proteins are more important in larval and adult development are required for survival and energy purpose (Foster, 1995). This quantification of nutritional reserves was done to check that whether the *R. tetraphylla* extracts affects the nutritional reserves of larval or not. To quantify nutrient reserves, firstly the larvae where exposed to LC$_{50}$ value of *R. tetraphylla* leaf extracts and also to control with solvent. After the treatment of leaf extracts, each larva was separated and immobilized on ice. The mosquito larva was homogenized in 0.1 ml sodium sulfate, 0.8 ml methanol and chloroform (1:1, v:v) added in it. It was centrifuged at 3000 rpm for 2 minutes. Sugar, glycogen and lipids were measured in the samples using modified version of Van Handel and Day (1988). The methanol precipitated the glycogen and remaining sample was transferred to another clean micro centrifuge tube. In that, 3 ml of distilled water were added and again centrifuged for 3000 rpm. Two layers are formed, the upper layer of sugar analysis and lower layer of lipid analysis. Glycogen in the precipitated and sugar in the aqueous fraction were measured with the Anthrone reaction (3 ml of Anthrone/tube) with glucose standard (0.1%). Lipid was quantified by a Vanillin-phosphoric acid reaction (5 ml Vanillin/tube) with 0.1% soybean oil in Chloroform as a standard. The total protein of larva was measured in the sample by using modified version of Van Handel (1988). The mosquito larva was homogenized in 0.3 ml phosphate buffer (pH 7.6) and centrifuged at 8000 rpm for 20 min. The supernatant was transferred in another centrifuge tube and again 0.3 ml of phosphate buffer was added in pellet centrifuge tube. The tube was centrifuged at 8000 rpm for 20 min. Supernatant collected in pervious tube to it 0.6 ml of 20 % Trichloroacetic acid (TCA) was added with shaking and centrifuged the same way.

The pellet washed with acetone and centrifuges it. The pellet dissolved in 1 ml of 01. N Sodium Hydroxide and analyzed for total protein. The protein was quantified by Folin’s reagent reaction (0.5 ml/tube) with 0.1 % Bovine Serum Albumin (BSA) as a standard. Absorbance value for sample and standard were measured by spectrophotometer (Jasco, V-630 at λ = 625 nm for sugar, glycogen and lidip, protein at λ = 660 nm). All values converted to microgram (µg) per larval body, based on a regression line equation derived from the standard curve. The all nutritional reserves quantification was ten times replicated. Results were analyzed by One Way Analysis of Variance (ANOVA), followed by Tukey’s test using trial version of XL-STAT 2011.4.04.
Results

Larvicidal activity of *R. tetraphylla* leaf extracts against *C. quinquefasciatus* was observed (Table 1). Among the leaf extract tested, the highest larvicidal activity was observed in n-hexane extract against the tested mosquito with LC₅₀ and LC₉₀ values were 16.80 ppm, 125.65 ppm respectively. It is followed by methanol, chloroform, acetone extract by giving LC₅₀ value 44.68, 91.56, 214.85 ppm for tested mosquito species respectively.

The chi-square values are significant at p < 0.05 level. The chi-square values in the bioassays indicated probably the heterogeneity of the population. The 95 % confidence limits (LC₅₀ (LCL - UCL)) were also calculated (Table 1). The percentage of egg hatchability of *C. quinquefasciatus* were tested with four different solvents at different concentrations of *R. tetraphylla* plant leaves extracts (Table 2).

The present results showed that in the oviposition attractant/deterrent assay, gravid female of *C. quinquefasciatus* preferred to lay eggs in the control cups than in the treated cups with solvents extracts of *R. tetraphylla* (Table 3). All test concentrations under investigation show negative OAI indicating ovipositional deterrent activity.

The present result showed that at 320 ppm concentration of n-hexane extract, ovipositional repellent activity is 100% and -1 OAI. It is followed by the methanol extract and chloroform extracts that show 96.37 %, 93.79 % effective oviposition repelency and -0.92, -0.88 OAI, respectively at 320 ppm.

Table 1. Larvicidal activity of *Rauvolfia tetraphylla* leaf extracts against *Culex quinquefasciatus*

<table>
<thead>
<tr>
<th>Extracts</th>
<th>LC₅₀ (ppm)</th>
<th>95 % confidential limit</th>
<th>Regression equation</th>
<th>LC₉₀ (ppm)</th>
<th>Chi-square (df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane</td>
<td>16.80</td>
<td>4 - 28.07</td>
<td>Y=1.46X+3</td>
<td>125.65</td>
<td>3.57* (7)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>91.56</td>
<td>79.05 - 104</td>
<td>Y=3.69X-2.25</td>
<td>203.41</td>
<td>10.93* (7)</td>
</tr>
<tr>
<td>Acetone</td>
<td>214.85</td>
<td>164.86 - 370.24</td>
<td>Y=2.07X+0.15</td>
<td>889.38</td>
<td>0.58* (7)</td>
</tr>
<tr>
<td>Methanol</td>
<td>44.68</td>
<td>29.85 - 57.23</td>
<td>Y=2.14X+1.46</td>
<td>176.93</td>
<td>5.07* (7)</td>
</tr>
</tbody>
</table>

LC₅₀ and LC₉₀ are lethal concentration at which 50% and 90% population dies respectively, LCL lower confidential limit, UCL upper confidential limit, df degree of freedom, *Significant at p<0.05

Table 2. Ovicidal activity of *Rauvolfia tetraphylla* leaf extracts against *Culex quinquefasciatus*

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Percentage of egg hatchability ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>25 ppm</td>
<td></td>
</tr>
<tr>
<td>50 ppm</td>
<td></td>
</tr>
<tr>
<td>75 ppm</td>
<td></td>
</tr>
<tr>
<td>100 ppm</td>
<td></td>
</tr>
<tr>
<td>125 ppm</td>
<td></td>
</tr>
</tbody>
</table>

Each value represents the mean of five replicates ± SE

Table 3. Oviposition Attractant/Deterrent assay of *R. tetraphylla* leaf extracts against *C. quinquefasciatus*

<table>
<thead>
<tr>
<th>Concentrations (ppm)</th>
<th>n-Hexane</th>
<th>Chloroform</th>
<th>Acetone</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>69.54</td>
<td>-0.05</td>
<td>61.86</td>
<td>48.88</td>
</tr>
<tr>
<td>40</td>
<td>81.21</td>
<td>-0.68</td>
<td>68.53</td>
<td>53.78</td>
</tr>
<tr>
<td>80</td>
<td>86.34</td>
<td>-0.75</td>
<td>75.85</td>
<td>59.39</td>
</tr>
<tr>
<td>160</td>
<td>94.68</td>
<td>-0.89</td>
<td>81.57</td>
<td>70.40</td>
</tr>
<tr>
<td>320</td>
<td>100</td>
<td>-1</td>
<td>93.79</td>
<td>79.82</td>
</tr>
</tbody>
</table>

All values are mean of five replicates, ER effective repellency, OAI oviposition activity index
concentration. A positive value indicates the more egg was deposited in test cup than in control cup and that test solution were attractive. It was seen that more eggs were deposited in control cup than in test cup and that test solution were intended to deter (Elango et al., 2009 and Elango et al., 2010).

All nutritional reserves quantification of control and exposed to different LC$_{50}$ concentration of R. tetraphylla leaf extracts are shown in Figure 1. The levels of all nutritional reserves were compared between controls and exposed to different R. tetraphylla leaf extracts found to be significantly different by One-Way Analysis of Variances (ANOVA), followed by Tukey’s test (p < 0.05, p < 0.001).

The solvent extracts of R. tetraphylla leaf treatment shows an over all effect on nutritional reserves of fourth instar larvae. After comparing all the extracts, the methanol extracts of R. tetraphylla leaf most affect the total sugars and lipid of fourth instar of mosquito and it decreases the sugars, lipid (Figure 1a and 1c). The acetone extracts of experimental plant affects mainly protein content of mosquito larvae. Protein level of larvae was decreased up to 91.05 µg (Figure 1d).

Discussion

In tropical and subtropical countries, the main reason of mortality is vector borne diseases mostly. The repellent and insecticide which are derived from the plants are used traditionally against insects. Plant-derived natural products have traditionally been used as repellents and insecticides against insects. The tested R. tetraphylla leaf extracts have exhibited promising larvicidal, ovicidal and oviposition deterrent activities against C. quinquefasciatus. The n-hexane extract of R. tetraphylla leaf shows LC$_{50}$ at 16.80 ppm (Table 1). This result is also comparable to earlier reports. Singh et al. (2003) observed the larvicidal activity of Ocimum canum oil against vector mosquitoes, namely, C. quinquefasciatus (LC$_{50}$ 301 ppm) and A. aegypti (LC$_{50}$ 363.07 ppm). Larvicidal efficacy of leaf methanol extracts of Paveonia zeylanica and Acacia ferruginea were tested against the late third instar larvae of Culex quinquefasciatus with LC$_{50}$ values of 2,214.7 and 5,362.6 ppm, respectively (Vahitha et al., 2002). The emodin compound was isolated from seeds and showed the LC$_{50}$ values of 1.4, 1.9, and 2.2 mg/l against Culex pipiens, Aedes aegypti, and Aedes togoi, respectively (Yang et al., 2003). Bagavan et al. (2008) have reported that peel chloroform extract of Citrus sinensis, leaf ethyl acetate extracts of O. canum and O. sanctum, and leaf chloroform extract of Rhinacanthus nasutus against the larvae of Anopheles subpictus (LC$_{50}$=58.25, 88.15, 21.67, and 40.46 ppm; LC$_{90}$=298.31, 528.70, 98.34, and 267.20 ppm) and peel methanol extract of Citrus sinensis, leaf methanol extract of O. canum, and ethyl acetate extracts of O. sanctum and R. nasutus against the larvae of Culex tritaeniorynchus (LC$_{50}$=38.15, 72.40, 109.12, and 39.32 ppm; LC$_{90}$=184.67, 268.93, 646.62, and 176.39 ppm), respectively. Ansari et al. (2005) observed the larvicidal activity of Pinus longifolia oil against three vector mosquitoes namely Aedes aegypti (LC$_{50}$ 82.1 ppm), Culex quinquefasciatus (LC$_{50}$ 85.7 ppm), and Anopheles stephensi (LC$_{50}$ 112.6 ppm). Khandagale et al. (2011) had shown that among the essential oil tested, the essential oil of Zingiber officinalis was highly effective against Aedes aegypti (LC$_{50}$ 154 ppm) and Culex quinquefasciatus (LC$_{50}$ 197 ppm). The highest activity of Zingiber officinalis oil was followed by Achyranthes aspera stem oil which showed LC$_{50}$ 668 ppm and LC$_{90}$ 355 ppm values against Aedes aegypti and Culex quinquefasciatus. The findings of our results is in corroboration with important findings of Sumroiphon et al. (2006) who have reported that the effect of water extract of citrus seed extract showed LC$_{50}$ values of 135,319.40 and 127,411.88 ppm against the larvae of Aedes aegypti and Culex quinquefasciatus.

The results of ovicidal activity of Rauwolfia tetraphylla leaf extracts were also comparable with earlier reports. According to Su and Mulla (1998), early stage of C. quinquefasciatus and Culex tarsalis eggs were more susceptible to neem products (Azadirachtin) because the egg shell is very thin at early stage, which facilitate the entry of neem products into the egg and interrupt the embryogenesis process. The bioactive compound Azadirachtin (Azadirachta indica) showed complete ovicidal activity in eggs of C. tarsalis and C. quinquefasciatus exposed to 10 ppm concentration (Su and Mulla, 1998). The younger age groups of egg rafts showed poor hatchability rate when exposed to higher concentrations of extract and that older age groups of egg rafts or eggs showed high hatchability rate when exposed to lower concentrations of extract and it was reported by Govindarajan et al. (2008a). Rajkumar and Jebanesan (2004) studied ovicidal activity of Moschosma polystachyum leaf extract against Culex quinquefasciatus and observed 100% egg mortality at
100 ml/l. The completer ovicidal activity was observed when *Culex quinquefasciatus* eggs were exposed to seed extract of *Atriplex canescens* at 1,000 ppm concentration (Ouda et al., 1998). According to Mullai et al. (2008), *Citrullus vulgaris* benzene extracts shows zero hatchability at 250 ppm and 11.80% low hatchability at 200 ppm, complete ovicidal activity at 300 ppm. The fraction I at 80 ppm exerted a very low hatchability rate of 3.2% followed by fraction II (6.9%), and fractions III and IV afforded 4.9% and 5.3% hatchability recorded against *Anopheles stephensi* and *Aedes aegypti*, respectively (Mullai et al., 2008). The benzene extract of *Ervatamia coronaria* exerted 100% mortality (zero hatchability) at 300, 250, and 200 ppm, respectively. The leaf extract of *Ervatamia coronaria* was found to be most effective than *Caesalpinia pulcherrima* against eggs of three vector mosquitoes (Govindarajan et al. 2011).

Results are mean ± SE (Standard error) of three different set of observations. (n=10), All Nutritional reserves quantification are expressed as µg / larvae, Data analyzed by One-Way ANOVA, followed by Tukey’s test and Significance is based on *p < 0.05, **p < 0.001 compared with control value, Different letters (a, b and c) indicate significant difference between respective extracts treatments (p < 0.05)

The present results indicated that the oviposition deterrence activity was dependent on concentration, as 320 ppm, of n- hexane, chloroform, acetone, and methanol leaf extracts of experimental plant exhibits strong deterrent effect when compared with 20 ppm against oviposition. The present study was also supported by previously reported result. Rajkumar and Jебanesan (2009) pointed out that the oviposition deterrence activity of ethanolic leaf extract of *Cassia obtusifolia* at higher concentration (400 mg/l) showed 92.5% effective repellency against oviposition, followed by 300, 200, and 100 mg/l showed 87.2 %, 83.0 %, and 75.5 %, respectively. According to Xue et al. (2006) the oviposition deterrent effectiveness (76 – 100 % repellency) tested against *Aedes albopictus* of 21 commercial insect repellent products.

Fig. 1. The *Culex quinquefasciatus* fourth instar Nutritional Reserves comparison of control and *Rauvolfia tetraphylla* leaf extracts treated (a) Total sugar, (b) Total glycogen, (c) Total lipid and (d) Total protein
(at 0.1 % concentration), including 12 botanical six
dee-based and three synthetic organics. The
Solanum trilobatum leaf extract was reduced egg lay-
ing by gravid females of *Anopheles stephensi*, from 18
% to 99 % compared with ethanol treated controls at
0.01 %, 0.025 %, 0.05 %, 0.075 % and 0.1 %
(Rajkumar and Jebanesan, 2005). The crude extract
of *Cuscuta hyalina* was an effective oviposition deter-
rent against *Culex quinquefasciatus* at a concentration
of 80 ppm which was reported by Mehra and
Hiradhar (2002). The full oviposition deterrence was
obtained with *Melia Azedarach* leaf extract at 1 g/l
against *Aedes aegypti* (Coria *et al*., 2008). The *Zingiber
officinalis* Rhizome oil exhibited 91.21 % and 83.33 %
ovidposition deterrence while *Achyranthes aspera* stem
oil caused 100 % and 85.71 % oviposition against
Aedes aegypti and *Culex quinquefasciatus* respectively
at 0.1 % concentration (Khandagale *et al*., 2011).

The essential oil from leaves and stem of *Piper
marginatum* exhibited an oviposition deterrent effect
against *Aedes aegypti* at 50 ppm and 100 ppm in that
significantly lower numbers of eggs (< 50 %) were
laid in glass vessels containing the test solutions
compared with the control solution which was re-
ported by Autran *et al*. (2009). Essential oils of *Cur-
cuma longa* (94.7%), *Schefflera leucanha* (91.6%), and
Zingiber officinale (90.1%) has relatively high ovipo-
sition deterrence, while *Piper nigrum* (82%), *Litsea
cubea* (80.6%), and *Eleutherococcus trifoliatus* (80.2%)
shows moderate degrees of deterrence (Tawatsin *
et al*., 2006). Among the 10 essential oils screened for
ovidposition deterrent activity, essential oil of
Cinnamomum zeylanicum was found to be highly ef-
fective in preventing egg laying by three mosquito
species with an order of deterrence, *Anopheles
stephensi* > *Aedes aegypti* > *Culex quinquefasciatus*
(OD₅₀ : 32.4, 33.5 and 50.1 µg/ml, respectively)
(Prajapati *et al*., 2005).

The *R. tetraphylla* affect all nutritional reserves but
mainly they affect the sugar and glycogen of mos-
quitos larvae (Figure 1). Van Handel (1988) and Van
Handel and Day (1988) shows the nutritional re-
quirement for larval development in mosquito and
our result of control larvae comparatively match
with them. When adult mosquito encloses nutri-
tional reserves consist of lipid and glycogen accu-
mulated during larval development (Foster, 1995).
About 60 % of glycogen and sugar reserves and 35
% lipid reserves are metabolized during the females
first gonotrophic cycle, acting as sources of energy
and as provision for developing eggs (Zhou *et al*.
2004). As result shows, there is decreased in the nu-
tritional reserves after treatment of *R. tetraphylla*
leaf extracts which may lead to deformities in adult
mosquito like low host seeking ability, shortening of
wings, low flight ability. There are many previous
reports which showed that larval nutrient deficiency
lead to above mention deformities in adult stage of
mosquito. Alves *et al*. (2004) reported that the
Ivermectin insecticides treated larvae of *C.
quinquefasciatus* shows damage in protein, fat body
and the females arisen from ivermectin exposed lar-
vae shows decreasing number of egg laid in the
adult stage. Klowden *et al*. (1988) reported that adult
female’s *Aedes aegypti* which was reared on subopti-
mal diet as larvae were less likely to engage in host
seeking behaviour than the adults derived from lar-
vae reared on an optimal diet. The relationship of
larval nutrition and adult body size to the suscepti-
bility of *Aedes aegypti* to Ross River Virus infection
was examined by Nasco and Mitchell (1994). It was
shown that large adult produced by feeding larvae
a high-level diet consumed significantly more virus
particles than did smaller mosquitoes.

Since ancient times, plants have been used by
several communities to treat a large number of dis-
eases and their vectors. Certain plant essential oils or
their extracts have a broad spectrum of activity
against insect. As such, they have considerable po-
tential for pest management. Like other alternative
pest management products, plant extracts and es-
ential oil based pesticides will be a panacea for pest
management. The present study revealed the Larvi-
cidal, ovipositional, ovicidal activities of *Rauwolfia
tetraphylla* at low concentration with reducing their
larval nutritional reserves. The plant essential oils
and solvent extracts have potential for the develop-
ment of new and safe control products for pest man-
agement. The results suggest that the n-Hexane and
methanol extracts of *Rauwolfia tetraphylla* shows
promising in mosquito control. Consequent upon
the results obtained the test plant extracts deserve to
be explored to assess their efficacy in field trials as
well as to study their economic and residual viability
to be consider for mosquito control program.
These extracts can be also considered for their use in
larvicidal, ovicidal products against mosquito either
as individuals or in combination with natural or
synthetic insecticides products.
Acknowledgements

The authors wish to thank the Head Department of Zoology and Dr. Milind D. Nikalje, Lecture in Department of Chemistry, University of Pune for providing necessary facilities and help to carry out this study.

References

Bowers, W.S. 1992. Biorational approaches for insect controlling necessary facilities and help to carry out this study.

The authors wish to thank the Head Department of Zoology and Dr. Milind D. Nikalje, Lecture in Department of Chemistry, University of Pune for providing necessary facilities and help to carry out this study.

References

