Analysis of ethanomedicinally potential extract of \textit{Nepeta cataria}

Amrita Verma Pargaien, Neema Bisht*, Himanshu Joshi, Saurabh Pargaien and Mansi Adhikari

Graphic Era Hill University, Bhimtal Campus, Sattal Road, Bhimtal, Uttarakhand 263136, India
College of Pharmacy Graphic Era Hill University, Bhimtal Campus, Sattal Road, Bhimtal, Uttarakhand 263 136, India.

(Received 24 April, 2020, accepted 16 June, 2020)

\textbf{ABSTRACT}

\textit{Nepeta cataria} has been representative species and the most intensively studied plant. Plant is well known for its traditional uses such as remedy for fever, cold, cough, stomach problems, diarrhea, sore throats, headaches, pneumonia, female problems, blood disorders, convulsions, rheumatism, and toothache etc. This heterogeneity could be the result of containment of rich essential oils, oxygenated terpenoid hydrocarbons and other chemical constituents. Apart from these, pharmacological screening reported its antifungal, antibacterial, antioxidant, insecticidal, anti-inflammatory, anti-nociceptive, and spasmolytic properties. Owing to its diversified pharmacological properties, a substantial number of phytochemicals have been isolated till date, but many more are still to be discovered from the store of nature. This review emphasizes on latest information regarding the distribution, taxonomy, traditional uses and more focused on phytochemistry, pharmacology.

\textbf{Key words:} Nepeta cataria, Catnip, Nepetalactone, Essential oil, Ethanomedicinal, Phytoconstituents

\textbf{Introduction}

Traditionally various medicinal plants or herbs are used, in less developed countries approximately more than 3.3 billion people use medicinal plants on regular basis, thus medicinal plants are also called ‘backbone’ of traditional medicine (Ahvazi \textit{et al}., 2012). Apart from this, due to safety and potency profile via the herbalism, it’s getting wide popularity (Gupta \textit{et al}., 2006). Potential activity of \textit{Nepeta cataria} extracts as well as essential oils is investigated pharmacologically and indicated as Anti-diabetic, Anti-Depressant, Anthelmintic, Nematicidal, Trypanocidal and Insect Repellent, antioxidant, antibacterial, anticancer, antiviral, and insecticide, etc (Setzer \textit{et al}., 2016; Sharma \textit{et al}., 2019; Mohan \textit{et al}., 2019; Giarratana \textit{et al}., 2017; Ali \textit{et al}., 2012; Ricci \textit{et al}., 2010; Lenardão \textit{et al}., 2016; Ashrafi \textit{et al}., 2019; Gokce \textit{et al}., 2010; Setzer \textit{et al}., 2016; Naguib \textit{et al}., 2012; Gilani \textit{et al}., 2009; Bernardi \textit{et al}., 2011; Satish S., 2013; Bernardi \textit{et al}., 2010; Saeidnia \textit{et al}., 2008; Bandh \textit{et al}., 2011; Pavaraj \textit{et al}., 2012; Reichert W \textit{et al}., 2019). The chemical investigation of the plant extracts have shown that the main constituent is terpenoid nepetalactone and others are such as β-caryophyllene, caryophyllene oxide, nerol, elemol, geraniol, 1, 8-cineol, citronellol, etc (Miceli \textit{et al}., 2005; Mohan \textit{et al}., 2019). In the current review, we summarized the plant profile, availability, bioactive chemical constituents, taxonomy, ethnobotanical use, pharmacological exploration of \textit{Nepeta cataria}.

\textbf{Plant Profile}

\textit{Nepeta cataria}

This plant is a multiregional, from Lamiaceae (mint) family and most cats are having strong attraction
towards the plant, also called as ‘catmint’. It is a rich source of essential oil and bioactive secondary metabolites. It is a perennial herb having small purple or red-dotted flowers/ whitish or pinkish (occasionally blue or lilac) and 0.3-1.6m (1-5 feet) height (Ibrahim et al., 2006; Sharma et al., 2019). Plant picture has been shown in Fig. 1.

Nepeta cataria contains secondary metabolites as well as essential oil and has shown various applications in diverse fields as food industries, agrochemical and pharmaceutical. Essential oil of *Nepeta cataria* also helps in stimulation of excretion, circulation and nervous system. *Nepeta cataria* is having chemical constituents like nepetalactones and iridoids, which are related to biological activities like as insect repellent, insecticidal, cat attractant, etc. Its uses are as follows;

As sedative, an insect repellent (most common pesticides and insect repellents ingredient), carminative, nervine tonic, emmenagogue (regulate menstrual flow), diuretic, diaphoretic.

Medically catnip includes diverse properties as antibiotic, anesthetic, astringent, in muscular aches, in chills, in rheumatism, in hemorrhoids and in toothache, etc. Catnip oil also helps in migraine, ulcers, dyspepsia, menstrual cramps and spasmodic cholera. Other health benefits of this plant are: tightening of muscles, skin, and gums; stimulating appetite and promoting production of hormones (Setzer et al., 2016; Sharma et al., 2019; Mohan et al., 2019; Giarratana et al., 2017).

Nepeta cataria as an Anti-Inflammatory and Antinociceptive Agent

Essential oil of the plant *Nepeta cataria* have different effects on central nervous system and minimizes acute as well as chronic nociception thus acts against inflammation. Ricci et al. (2010), discussed and explored about the chemical profile of *Nepeta cataria* by the tail immersion method in mice and acetic acid-induced nociception. *Trans*, *trans*-nepetalactone and *trans, cis*-nepetalactone are the main chemicals for this activity (Ali et al., 2012; Ricci et al., 2010; Ricci et al., 2010).
et al., 2010; Lenardão et al., 2016).

Nepeta cataria as an Anti-oxidants

Antioxidant activity has been shown by ethanolic extracts of *Nepeta cataria* and this is in relation with total phenolic compounds content present in the extract; indicates that the plant extract may be as natural source of antioxidants. This activity of essential oil can be due to the presence ‘nepetalactones’ (62.5%) in oil (Ashrafi et al., 2019; Gokce, et al., 2010).

Nepeta cataria as an Antifungal and Antimicrobial Agents

Essential oil of *Nepeta cataria* composed of following constituents for antimicrobial activity; 4αα, 7β, 7αα-nepetalactone, 4αα, 7β, 7αα-nepetalactone and 4αα, 7αα-nepetalactone (Setzer et al., 2016). (Bourrel et al., 1993) examined and reported that the oil that was obtained from the flowering plant of *Nepeta cateria* is rich in lactone than oil that was obtained from the plant before flowering. They find that increased antifungal action against *Candida* was due to lactone, as the sample rich in lactone (70%) than sample lesser in lactone concentration (10%). Further using the microplate technique they found that Catnip oil shown fungistatic activity against *Aspergillus niger*.

Nepeta Cataria as an Antidiabetic Agent

(Naguib et al., 2012) performed research on *Nepeta Cataria* extract on the basis of following mechanism; Inhibition of carbohydrate-hydrolysing enzymes (α-amylase, α-glycosidase and α-galactosidase) in the gastrointestinal tract causes retardation of the absorption of glucose by decreasing the postprandial hyperglycemic state. In it, they reported the presence of lavonoid, triterpenes, carbohydrates, glycosides, etc other compounds may be concerned with antioxidants as well as hypoglycaemic effects of *Nepeta cataria* extracts. Also they discussed that extract have shown inhibitory effects on nitric oxide (NO) radical, 2, 2, 1-diphenyl-1-picrylhydrazyl (DPPH), α-amylase, α-glycosidase and β-galactosidase enzymes.

Nepeta Cataria as Spasmolytics and Bronchodilators

Gilani et al., (2009) investigated composition of chemical and pharmacological aspect of *Nepeta cataria* in tissues preparations. They identified four constituents in oil; 1, 8-cineole, α-humulene, α-pinene, Geranyl acetate. This plant has shown Spasmolytics and myorelaxant action mediated through mainly via inhibition of calcium channels and enzyme phosphodiesterase (PDE).

Nepeta cataria as a Penile Erecting agent

The study conducted by Bernardi et al., (2011) reported that enhancement of penile erection and rat sexual behavior via dopaminergic system is shown by catnip plant. Thus may be suggested for future clinical treatments for erectile dysfunction after more valuable research data needed as the long-term effects, mechanism of action and active principles identification on sexual behaviour.

Nepeta cataria in the treatment of Alzheimer’s disease

Satish (2013) studied and reported anti-amnesic effects of *Nepeta cataria* as well as influence on central cholinergic action through estimation of whole brain acetyl cholinesterase activity. *Nepeta cataria* essential oil decreased acetyl cholinesterase activity significantly.

Hence, memory improving activity of *Nepeta cataria* essential oil may be due to its neuroprotective, pro-cholinergic, antioxidant, and anti-acetyl cholinesterase properties thus may be use in delaying the onset and decreasing the severity in Alzheimer’s disease. Furthermore investigations using more experimental data will be required for further confirmation of essential oil in the treatment of various cognitive disorders.

Nepeta cataria as in Anti-Depressant Activity

Bernardi et al., (2010) studied anti-depressive activity in male mice which were fed very markedly as well as administration of polar and apolar extracts repeated with *Nepeta cataria* leaves. They found immobility reduction in behavior with apolar extracts and no changes in behavior with polar extracts, this indicated that apolar extracts of plant leaves has anti antidepressant action.

Nepeta cataria as a Cytotoxic Agent

Suschke et al., (2007) reported cytotoxic activity of *Nepeta cataria* essential oils by microculture tetrazolium essaymethod against human keratinocyte and bronchial epithelial cell lines.
Nepeta cataria as in Trypanocidal, Anthelmintic and Nematicidal Activity

Saeidnia *et al.*, (2008) studied and reported Trypanocidal activity on epimastigotes of *Trypanosoma cruzi* of diethyl ether extract from *Nepeta cataria*. (Bandh *et al.*, 2011) evaluated and reported Anthelmintic activity *in vitro* and *in vivo* on live *Haemonchus contortus* worms of methanol extracts from *Nepeta cataria*. (Pavaraj *et al.*, 2012) studied and reported Nematicidal activity on *Meloidogyne incognita* egg hatchability of methanol extracts isolated from *Nepeta cataria*. They exposed eggs and nematode to different concentration (10ppm-100ppm) of plant extract for 24, 48, and 72 hrs. After exposing they observed that as plant extract concentration increased, egg-hatching capacity decreased.

Nepeta cataria as in Insect Repellent activity

Zhu *et al.*, (2009) studied and have shown that essential oil of *Nepeta cataria* is having repellency activity against *Musca domestica* (L.) and *Stomoxys calcitrans* (L.). Furthermore, toxicity studies of catnip oil reported that it may cause minor irritation in some individuals having sensitive skin Reichert *et al.*, (2019) studied as well as evaluated essential oil from *Nepeta cataria* (catnip) two recently cultivated breed having different chemo type nature and found that chemical constituents (isomers of nepetalactone) have shown repellency against *Aedes aegypti* mosquitoes, causative agent of Dengue and Zika virus. Nepetalactone isomers of *Nepeta cataria*, investigated for repellency activity were E, Z nepetalactone and Z, E-nepetalactone.

Traditional Uses

Traditionally by leaves of *Nepeta cataria*, prepared tea has been used for the cure and treatment of respiratory disturbances like asthma, bronchitis, and cough also for gastrointestinal disturbances like diarrhoea, etc. Some Indian tribes from Chippewa as well as North America used leaves of plant for preparation of herbal tea (excessive intake of tea can cause diarrhoea). Also Indian tribe people prefer the plant to treat coughs, colds as well as stomach upsets. Apart from this, people from Iroquois Indian tribes used this plant for the cure of sore throats, vomiting, diarrhea and headaches. Along with this, to cure pneumonia and as a sweating inducer many Menominee peoples, for pain relief Rappahannock tribe’s people and to cure female disorders many Cherokee peoples used this plant. Shinnecock used for rheumatism and Cherokee Indians used this plant for the convulsion’s treatment. Further, as antiseptic, diaphoretic, tonic, carminative, for tooth ache, emmenagogue, and refrigerant all uses were due to aromatic nature of dried leaves and flowering tops of plant (Sharma *et al.*, 2019; Shafaghat *et al.*, 2010; Formisano *et al.*, 2011; Baser, *et al.*, 2000). Other biological and medicinal properties of *Nepeta cataria* are the following: plant extracts having inhibitory activity on production, growth of enzyme as well as bacteria. Leaves or flowering tops have been used for its flavoring property in cheese and soups. Also, in North America, it has been used as medicine, dyes, etc. Further it has been taken as a hot infusion which is useful in insomnia, flu and cold. For preventing miscarriage, premature birth and to cure morning sickness, this plant is also preferred (Nostro *et al.*, 2001; Sharma *et al.*, 2019; Adiguzel *et al.*, 2009; Birkett *et al.*, 2011; Ricci *et al.*, 2010).

Recommendation For Farmers

Nepeta cataria is a common wild weed, it can grow widely but this is very sensitive to winter season. *Nepeta cataria* is also used in gardens as an ornamental plant. Essential oil of this plant is very useful, as discussed before. Thus, for farmers it could be a good choice of cultivation during its season (Park *et al.*, 2007). Cultivation of *Nepeta cataria* could be beneficial because worms or bugs don’t like the aroma of plant due to the presence of essential oils in it. This feature of insect repellency can work for those crops which are very susceptible by insect attack and disease (Carpenter *et al.*, 2015).

Conclusion

Catnip is a native plant of southern Siberia, Central Asia, China and Eastern Europe with many traditional uses. This review emphasized the plant profile, availability, bioactive chemical constituents, taxonomy, ethnobotanical use and pharmacological exploration of *Nepeta cataria*. As shown in the review, many uses of *Nepeta cataria* are there as for the gastrointestinal (diarrhea) and respiratory (asthma, cough, bronchitis) diseases, Anti diabetic, Anti-Depressant, Anthelmintic, Nematicidal, Trypanocidal and Insect Repellent etc. Many researchers confirm the safety studies of Catnip, though after reviewing traditional aspects given the idea about the plant if uses in safe modeon humans. However, this diver-
sity of results could inspire researchers to do more pharmacological studies which should proceeds in other regions also to explore unreported medicinal value of plant.

References

