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ABSTRACT

 Plant family Orchidaceae is well-known in the global floriculture market for its beauty, long-lasting flowers,
and exquisite variation in flower colour, shape, size, foliage form, and texture. They are thought to be one
of the most varied and evolved vascular flowering plants. Orchids produce millions of dust-like seeds in a
pod, but they have a unique and persistent problem with seed propagation due to a lack of food reserve
‘endosperm’ in their minuscule seeds, which often fail to germinate in a natural environment without
being in symbiotic association with compatible mycorrhizal fungi. Symbiotic seed germination takes
advantage of the fungal-orchid symbiosis interaction, in which orchid seeds are germinated in different
growth media after being inoculated with orchid mycorrhizal fungi. It has been one of the most important
and commonly used propagation techniques for orchid conservation and reintroduction programmes around
the world. Prior to the introduction of the in situ technique in the early 1990s, symbiotic seed germination
was performed using an ex situ procedure. The in situ technique was designed to improve the efficiency of
orchid seed propagation and reduce acclimatisation challenges during the reintroduction programme. It
emphasises germination in natural environmental settings, with the idea that the presence of suitable fungi
in the surrounding environment can influence germination. In situ symbiotic germination is a relatively
recent technique that has evolved over time and continues to be with increased interest and research in this
area. This review article is an attempt to provide an overview of symbiotic seed germination in orchids- ex-
situ and in situ techniques.

Key words: Symbiotic germination, Orchids, Ex situ orchid conservation, In situ orchid conservation, Orchid mycorrhizal
fungi

Introduction

The family Orchidaceae, with more than 17,000 to
25,000 species recorded thus far, is the largest an-
giosperm plant family (Christenhusz and Byng,
2016) and is considered one of the most evolved and
diverse flowering plant species (Nomura et al., 2013;

Rafter et al., 2016; Suetsugu et al., 2020). Orchid spe-
cies are known for their bewitching flowers, and
rich diversity, viz. colors, form, textures, shape, size,
fragrance, etc. (Peakall, 2007). Owing to their mul-
tiple uses, demands for orchids have increased
manifold in recent decades (Shao et al., 2017a) ren-
dering many species on the verge of extinction
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across the planet (Dixon et al., 2003; Jones, 2006;
Dearnaley, 2007a) due to unscrupulous extraction,
drastic change in a forestland landscape, global cli-
mate change, etc. The endangerment of the orchid
species and decline in their population are com-
pounded by their high level of geographic ende-
mism and complex relationship with other organ-
isms (Swarts and Dixon, 2009; Orejuela-Gartner,
2012). Orchids are now considered one of the most
endangered plant species (Cribb et al., 2003; Phelps
and Webb, 2015) and are predicted to be among the
first to decline due to habitat degradation
(Backhouse, 2007). This makes it difficult for orchid
conservationists worldwide to strike a balance be-
tween orchid conservation and market demands
(Shao et al., 2017b).

The use of millions of dust-like, minute, light
seeds produced in an orchid pod and their success-
ful germination (Arditti and Ghani, 2000a) for mass
propagation and rapid regeneration of orchids could
be the best way to fill the gap between production
and market demands as well as for conservational
works. However, orchid seed have Unique and per-
sistent problem for seed propagation. The minuscule
orchid’s seeds lack‘endosperm’ food reserves, and
an embryo is surrounded by air space (Arditti and
Ghani, 2000b; Barthlott et al., 2014). As a result, or-
chid seeds often fail to germinate in nature in the
absence of compatible fungi called “orchid mycor-
rhizal fungi”, which are crucial for the germination,
initial seedling development, and subsequent
growth and development of the plant (Rasmussen,
1995a). A mutualistic relationship is advantageous
for the propagation of seeds devoid of nutritional
reserves (Rasmussen, 1995c). To reap such beneficial
association and to overcome the germination prob-
lem in orchid seeds,”symbiotic seed germination”
was developed, wherein orchid seeds are germi-
nated in media inoculated with compatible fungi. It
has merit for both horticultural and conservational
works (Aggarwal and Zettler, 2010) and has become
an essential part of orchid propagation worldwide
(Stewart et al., 2003; Batty et al., 2006a; Otero et al.,
2013). Initially, symbiotic seed germinations were
carried out in ex-situ conditions (conventional tech-
nique) which remained primary components for re-
storing many orchid species for decades (Shao et al.,
2017c) despite various reports on slow growth, high
mortality rates, delayed flower phenology (Shimura
and Koda, 2005; Batty et al., 2006b; Stewart and
Kane, 2007a; Wu et al., 2010), lacking genetic varia-

tion necessary for local adaptation and evolutionary
potential (Zhou and Gao, 2016a), labor intensive-
ness, rendering it limited conservation value on a
large scale (Shao et al., 2017d). Later, Rasmussen and
Whigham (1993a) first developed the
nonconventional in situ symbiotic germination tech-
nique which prompted many other researchers such
as Zettler et al. (2011a) in the USA, Liu et al. (2014) in
China, Higareda et al. (2015) in Brazil and Shao et al.
(2017e) in China,to improve this technique with
their ingenious research problems in addition to the
difficulties and drawbacks stated by previous re-
searchers. The continuous research and progress
made by different researchers from different parts of
the world significantly transformed in situ tech-
niques over time. Growing research and literature
suggest that the in situ symbiotic germination tech-
nique is comparatively advantageous over ex-situ
symbiotic germination, especially for orchid reintro-
duction Programmes. However, compared to ex situ
technique, the literature on in situ technique and its
use is still limited. This review article attempts to
provide an overview of ex situ and in situ symbiotic
seed germination in orchids, its applications and
benefits, and diverse empirical findings from vari-
ous sources. This review article was prepared using
a variety of sources, including e-journals, published
research papers, articles, books, and so on.

Orchid mycorrhizal fungi and their significance in
orchid life

Mycorrhizae are symbiotic relationships between
the roots of higher plants and fungi. Such symbioses
are ubiquitous in nature (McCormick et al., 2018);
however, the orchid mycorrhizal fungi are an exclu-
sive symbiotic relationship between the plant family
Orchidaceae and the fungi, rendering almost all the
orchid species mycoheterotrophic at one point of
their life (Rasmussen, 1995b). Orchid mycorrhizal
fungi provide essential nutrition for germination,
and protocorm formation until the green leaf stage
(Dearnaley, 2007b; Smith and Read, 2008;
Rasmussen and Rasmussen, 2009a; Rasmussen,
1995d). This fungal association is often maintained
into adulthood, although the dependence of the
adult plant on fungi may vary with life forms viz.,
epiphytic or terrestrial (Rasmussen and Rasmussen,
2009b). The actual symbiotic relationship begins
with the infection of dust-like seeds by the fungus,
after which the seed swells and protocorms are
formed as the initial myco-heterotrophic stage
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which leads to the development of seedlings. The
fungus colonizes the tissue of the orchid and forms
highly coiled hyphal structures called “pelotons”
within the root cortex with the size of root cells
(Sathiyadash et al., 2012). These pelotons are di-
gested or lysed by orchid cells that access carbon,
phosphorus, and nitrogen to the orchids and in re-
turn, orchids provide amino acids and sugar to the
fungus (Dearnaley and Cameron, 2017). This diges-
tion occurs in a controlled manner allowing succes-
sive waves of peloton formation, digestion, and re-
infection within the same root cells (Smith and Read,
1997a) that maintain the duration of their active as-
sociation (Brundrett, 2002). Thus, orchid roots con-
tain pelotons either in lysed or intact conditions in
different proportions at any given time (Smith and
Read, 1997b).

Various studies have shown that both photosyn-
thetic and mycoheterotrophic orchids associate with
a range of fungal species (Shefferson et al., 2007;
Jacquemyn et al., 2010; De Long et al., 2013; Waud et
al., 2017) mostly with fungal taxa belonging to
Rhizoctonia like species,a group of Basidiomycetes,
specifically Ceratobasidiaceae, Serendipitaceae, and
Tulasnellaceae (Dearnaley et al., 2012; Rasmussen
and Rasmussen, 2014; Weiß et al., 2016). These my-
corrhizal fungi play a significant role in rehabilitat-
ing threatened orchid species in their natural habi-
tats (Dearnaley, 2007c) as they are believed to en-
sure orchid survival in habitats vulnerable to stress-
ful conditions or habitats with limited resources.
Thus, for successful in situ and ex-situ orchid conser-
vation, the availability of suitable OMF and niche
conditions is imperative (Rasmussen et al., 2015;
Bidartondo and Read, 2008a and Reiter et al., 2016)
and conservation efforts should involve a thorough
understanding of the biology of orchids (Dearnaley,
2007d), their complex relationship and their interac-
tion with fungi. However, the presence, distribution,
andniche requirement of OMF are still poorly stud-
ied and understood (Muhammad et al., 2019).

Baiting techniques for symbiotic seed germination

A conventional technique, ex-situ symbiotic and
asymbiotic seed germination, has remained the most
widely used technique for orchid conservation for
decades. In the symbiotic germination technique,
orchid seeds are germinated with compatible fungal
inoculation under controlled environmental condi-
tions. In situ symbiotic seed germination is a
nonconventional technique, wherein viable orchid

seeds are baited in natural environmental conditions
and retrieved later when protocorms/seedlings are
developed. A growing body of literature suggests
that ex-situ and in situ symbiotic germination tech-
niques can be used in an integrated way for more
efficient and effective results whereby the mycor-
rhizal fungi isolated from germinated protocorms or
young seedlings from in situ are being used as in-
oculum for ex-situ germination for conservation and
reintroduction (Huang et al., 2018a). In doing so, the
ex-situ technique works as an extended technique of
in situ symbiotic germination. The procedures fol-
lowed in these two techniques are discussed below.

In situ symbiotic seed germination

The initial in situ seed burial technique described as
the “seed packet technique” was developed by
Rasmussen and Whigham (1993b) and was based on
the understanding that the patchy distribution of
orchids may be influenced by the presence or ab-
sence of specific mycorrhizal fungi essential for the
survival of orchids. In this technique, orchid seeds
are sown and retrieved in the field under natural
conditions. Later, Brundrett et al. (2003) modified the
technique by placing orchid seeds and silica sand
between two pieces of nylon mesh and held in place
by a slide frame. However, this technique was con-
fined mostly to terrestrial orchids, and poor survival
during summer drought conditions, difficulty in re-
trieving the sample, and reported low retrieving
percentage were the major drawbacks of this tech-
nique. These factors prompted many studies on in
situ symbiotic germination in the following decades.
Owing to their ascension into the tree canopy, re-
searchers faced an additional burden to make in situ
techniques practical for epiphytic orchids as well
(Shao et al., 2017f). This led to the placement of or-
chid seeds in organic substrates such as sphagnum
moss, leaf mold, or bark, which still proved unsuc-
cessful (Kauth et al., 2008). However, it was found
that sphagnum moss permits good light penetration
and water retention, and prevents desiccation in the
field which is necessary for acclimatization or seed-
ling reintroduction (Zettler et al., 2007; Valadares et
al., 2012; Zeng et al., 2012; Khamachatra et al., 2016a).
This technique was further modified by Zettler et al.
(2011b) and Zi et al. (2014a) by emphasizing affixing
seed packets to arboreal substrates. Again, they in-
dicated several challenges to keep substrates moist-
ened and effective fungus growth and proliferation
to enable endophytic seed germination. This moti-
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vated Higareda et al. (2015) to develop a novel seed
baiting technique wherein they used rectangular 10
x 5 cm plankton netting mesh packets with 65 µm
pore size and rectangular 3.5 x 2.5 x 0.5 cm synthetic
sponge to improve the water and moisture retention
as well as to raise the possibility of priming of myc-
orrhizal fungi. A sponge with homogeneously dis-
persed seeds (without inoculation) was then placed
into a nylon mesh packet and sealed, which was
placed nearby young orchids in host trees
(phorophytes). To mimic the natural environment,
lichens or moss colonies from the same trees were
used to cover each packet. This technique reported
protocorm formation after 124 days of incubation
(Fig. 1). Furthermore, Shao et al. (2017g) proposed a
modified technique that they called a “novel in situ
advanced restoration-friendly program” in which 1
g of cultured mycelium of Tulasnella sp. was homo-
geneously mixed with 50 ml of sterile deionized
water to form a suspension, which was then sown
on Camellia assamica trees using a medical syringe in
two different locations and different treatments
(Table 1). In all these studies, orchid seeds were
placed in their natural habitat without inoculation,
assuming that existing fungi in soil or substrate will

colonize the baited seeds (Brundrett and Ramsay,
2001).

Ex situ symbiotic seed germination

Traditionally, ex situ symbiotic or asymbiotic seed
germination has been the main restoration technique
and is considered cost-effective despite the limited
genetic potential and high mortality rate in the field
(Shao et al., 2017h). The ex situ method is used for
both symbiotic and asymbiotic seed germination,
however, our discussions here will focus on ex situ
symbiotic germination, not asymbiotic germination.
Reintroduction through ex situ symbiotic germina-
tion has been a primary component for the restora-
tion of many orchid species to date. This technique
does not always mean representing any realistic en-
vironmental conditions; rather, it acts as a replica of
the microenvironment and may function as a tool
for extensive studies (López-Chávez et al., 2016;
Yamamoto et al., 2017; Valadares et al., 2020). Two
important elements required for ex situ symbiotic
culture are orchid seeds and a suitably isolated fun-
gus on solid agar medium containing nutrients for
the fungus and not the seeds assuming that seeds
can absorb only water, not nutrients (Pujasatria et al.,

A. Rectangles of plankton netting
mesh.

B. Folding plankton netting mesh
and sealing

C. Construction of synthetic sponge
rectangles

D. Seeds dispersed on the surface of
the sponge

F. The packet was finally sealed with
glue

Fig. 1. A novel seed baiting by Higareda et al. (2015) in Lankesteriana, vol. 15, issue 1 (pp. 67-76) (with permission)

E. Placing sponge with seeds into
nylon mesh packet
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2020). This technique can be modified based on per-
sonal convenience (Hoang et al., 2016).  The stages
involved in this technique are as follows;

Seed collection

Mature orchid seed capsules are collected in a ster-
ile glass vial containing desiccant CaSO4 (Higareda
et al., 2015). During collection, care must be given to
maintaining reproductive potential in the wild. It is
advisable to collect only 10% of the total seeds avail-
able on the day of collection (Brundrett and Ramsay,
2001). Proper labelling should be done.

Seed sterilization, viability test, andpretreatment

A collected seed’s capsules aresurface sterilized
with 75% ethanol for 2 minutes (Meng et al., 2019a;
Shao et al., 2017i). The capsules are opened to release
the seeds with the help of a scalpel under sterile con-
ditions. Seeds are air dried over CaCl2 for 4 days at
25±2 °C and then stored at 4 °C fora short period
(Higareda et al., 2015; Meng et al., 2019b), after
which they are stored at -20 °C (Meng et al., 2019c;
Shao et al., 2020). Seeds canthen bepre-treated with
NaClO 1% (w/v) for 3 minutes to improve the hy-
drophilicity and permeability (Chen et al., 2022) fol-
lowed by rinsing with deionized water. Pretreat-
ment of seeds is not a mandatory prerequisite, as
Aggarwal and Zettler (2010b) successfully germi-
nated Dactylorhiza hatagirea without pretreatment.
The viability of the seed is tested with 1% TTC in
deionized water (Vujanovic et al., 2000; Higareda et
al., 2015; Shao et al., 2017j) for 72 hours at 30 °C in
darkness (Higareda et al., 2015) followed by wash-
ing the seeds in sterile distilled water for 3-4 minutes
(Meng et al., 2019d). The seed with a red, pinkish
brown, ovoid shape embryo under light microscopy
(Aggarwal and Zettler, 2010c) observation is viable
whereas the unstained embryo is unviable as de-
scribed by Van Waes and Debergh (1986).

Seed sowing and fungal inoculation

A range of asymbiotic nutrient media, such as OMA,
MS-Media, Vacin and Went media, and Thomale
GD (Khamachatra et al., 2016b) can be used for sym-
biotic seed germination. A 0.5 cm3 (Higareda et al.,
2015) or 1 cm3 (Aggarwal and Zettler, 2010d; Chen et
al., 2022) sample isolated, the identified mycorrhizal
fungus is inoculated on one side of the paper strip
and sealed immediately to retain moisture and pre-
vent contamination. Seed sowing can be done by
following the general protocols reported by Stewart

and Zettler (2002). Petri dishes with seeds are then
incubated at 22°C (Higareda et al., 2015).

Seed germination

Depending upon the orchid species, media used,
and fungal isolates, germination will occur with
swelling of seeds, followed by protocorm formation
and seedling development. The different germina-
tion stages can be observed by Arditti (1967) as
shown in Table 2.

Growing

Well-developed seedlings are transferred into a
growing container with suitable media in ambient
environmental conditions for acclimatization before
reintroduction into the wild.

Table 2. Stages of symbiotic germination and seedling
development by Arditti (1967) and modified by
Shao et al. (2020) and Chen et al. (2020)

Seed Description
germination
stage

Stage 0: Seed, no germination
Stage 1: Embryo swollen, turned light green, no ger-

mination (covered by testa)
Stage 2: Embryo continue enlargement and dis-

charged from testa (germination)
Stage 3: Protocorms formation and development, ap-

pearance of protomeristem
Stage 4: Emergence of first leaf (seedling)
Stage 5: Elongation of first leaf
Stage 6: Seedlings with two leaves

Environmental conditions for symbiotic seed
germination

The growth of orchids depends upon environmental
factors, viz. temperature, soil type, competition, pol-
lination, and the presence of mycorrhizal fungi in
the ecosystem (Gregga and Kéryb, 2006; Swarts et
al., 2010). Various ex-situ and in situ symbiotic ger-
mination studies have established that different en-
vironmental conditions during the incubation pe-
riod and the sites of seed placement have significant
effects on germination, protocorm formation, and
subsequent seedling development. The major ad-
vantage of ex situ over in situ conditions is that the
environmental conditions that in ex situ conditions
can be regulated or maintained as per need through-
out the study period which is not possible in in situ
conditions. In in situ, seeds are brought back to the
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Table 1. In situ symbiotic seed germination reported from different places

Orchid Epiphytic/ Location Experiment conditions Experiment outcomes References
Terrestrial

Dendrobium Epiphytic China A liquid suspension of the seed
devonianum of D. devonianum 4 mlwas sown

on a tree trunk using a medical
syringe. Treatments were;
sphagnum wrap, directly
applied on the tree trunk,
seed suspension mixed with
cow dung directly applied on
the tree trunk, plastic wrap,
plastic wrap + suspended
seeds in nylon packets, and
control where suspension of
seeds was mixed with 0.1%
sterile agar without fungal
inoculum. These treatments
were placed on Camellia
assamica tree in two
different locations.

Dendrobium Epiphytic China Seeds of D. chrysotoxum were
chrysotoxum, homogenized with sterilized
D. nobile, agar suspension (0.1% agar).
D. catenatum, 1 ml viable seed mixture was
D. devonianum dispensed into a nylon mesh

packet with 45 µm pores, using
a standard baiting protocol
described by Rasmussen and
Whigham (1993) and Zi et al.
(2014). The seeds were placed
on trees with plastic wrap to
retain a sufficient amount of
humidity within the packet
and avoid desiccation in
different locations.

Rhynchostele Epiphytic Mexico The sponge was used to retain
cervantesii moisture, where the matured

dried seed of 100 mg was
homogeneously dispersed.
The sponge was then placed
under a nylon mesh packet
which was later on installed
on the host tree given that that
tree harbored at least one
species of Rhynchostele
cervantesii.

D. aphyllum Epiphytic China Seeds of D. aphyllum were
placed in a 4x 6 cm nylon
packet with 45µm diameter
pore to facilitate fungal

After 3 months, the germina-
tion % was found to vary
among treatments and loca-
tions. Control treatment did
not germinate in both loca-
tions. The highest germina-
tion % was found in treat-
ment plastic wrap + sus-
pended nylon seed packet in
both locations. Regardless of
the season, microclimate
conditions plastic wrap +
seed packet having the high-
est in situ germination rate
(0.94-1.44%) with no signifi-
cant variation among sites,
supported by a warm, moist,
and fixed site that allowed
for light penetration.

Shao et al.
(2017)

After 4 months of seed bait-
ing, 32% (34 out of 107) of the
packets were retrieved and
were effectively germinated
and developed into
protocorms.  Protocorms
were colonized by seven dif-
ferent fungal isolates. Four
different strains isolated from
D. chrysotoxum were
Tulasnellaceae sp., Coprinellus
subdisseminatus, Uncultured
Tulasnellaceae clone, and Un-
cultured Tulasnellaceae
(clone). One strains each
from D. nobile (Sebacinaceae
sp.), D. catenatum (Uncul-
tured Tulasnellaceae clone)
and D. devonianum
(Epulorhizasp.)

Shao et al.
(2020)

Sponge acted as a moisture re-
tainer and mimics the natural
conditions. Of the total 22
samples installed, 3 samples
were found developing
protocorms after 3-4 months
(124 days).

Higareda
et al. (2015)

After 10 months, 161 packets
out of 210 total packets were
recovered and it was found
that the probability of

Zi et al.
(2014)
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natural environment, and exposed to different biotic
and abiotic factors.

Maintaining ambient environmental conditions
for in situ germination is a challenging task. A warm
microhabitat with high and constant humidity and
proper light penetration to the site of seed place-
ment affects germination and protocorms forma-
tions in in situ seed baiting has been reported by
Shao et al. (2017) and Zi et al. (2014b). Maintaining
favorable microclimatic conditions is necessary for
the maintenance of seedlings and fungal vitality
(Shao et al., 2017), which otherwise may prove to be
fatal to successfully symbiotically germinated seed-
lings as reported in Caladenia arenicola by Batty et al.
(2006c). To maintain sufficient humidity within the
seed packet and to prevent desiccation, a synthetic
sponge (Higareda et al., 2015) and plastic (degrad-
able and eco-friendly) are used to wrap the seed
packet placed on the tree (Shao et al., 2020). The
rapid development of orchid seedlings (epiphytic in
particular) in situ may be advantageous in moisture
deficit places, especially during the dry season (Shao
et al., 2020).

Shao et al. (2017) also reported that seed germina-
tion in in situ is influenced by the season of sowing
in Dendrobium devonianum where high germination
was recorded during the cool misty season, followed
by the dry hot season, whereas the lowest germina-
tion was recorded during the rainy season. To ob-
tain immediate fungal colonization from the natural
environment in in situ seed baiting, it is advisable to
place the seed nearadult plants of the same species
to obtain high germination (Batty et al., 2001). How-
ever, Kartzinel et al. (2013) in Epidendrum firmum and
Shao et al. (2020) in Dendrobium chrysotoxum re-
ported successful germination even when seed
packets were not placed in proximity toany adult

plant.
Likewise, in ex-situ conditions, the length of light

duration during the incubation period accelerates
protocormformation and subsequent seedling devel-
opment (Aggarwal and Zettler, 2010e; Huang et al.,
2018b; Shao et al., 2020). A significant influence of
light on seedling development was also reported by
Zi et al. (2014c) in D. aphyllum and Wang et al.
(2011a) in D. nobile and D. officinale as well as in the
terrestrial orchid Calopogontuberosus (Kauth et al.,
2006). Huang et al. (2018c) reported that seeds devel-
oped into protocorms regardless of the presence of
light, whereas protocorms failed to develop into
seedlings unless illumination was provided in D.
devonianum. Rasmussen (1995e) reported that the
seeds of temperate orchids do not respond well to
light conditions (Rasmussen, 1995f). Different re-
sponses to light and dark conditions during germi-
nation are observed in epiphytic and terrestrial or-
chids (Zi et al., 2014d). The temperature in incuba-
tion is usually maintained at 25±1 °C (Zhang et al.,
2020a) in D. officinale, and Li et al. (2021a) in G. elata.

Source of fungal isolates and their specificity

Very little is known about the niche requirement for
the germination of orchids in in situ, especially the
role and specificity of mycorrhizal fungi during ger-
mination and in subsequent seedling development
(Stewart and Kane, 2007b; Rasmussen et al., 2015).
At any given time, orchid species may associate
with one or more Rhizoctonia-like fungal species
(Dearnaley et al., 2012), thus their relationship is
very complex. The degree of specificity between or-
chids and their mycorrhizal fungi is influenced by
environmental conditions and surrounding plant
species and is highly variable (Waterman and
Bidartondo, 2008; Selosse and Roy 2008; Otero et al.

Table 1. Continued ...

Orchid Epiphytic/ Location Experiment conditions Experiment outcomes References
Terrestrial

hyphae growth inside the
packet. All 210 nylon packets
containing 80-100 seeds were
placed on the tree bark and
covered with moss to prevent
desiccation and facilitate
proper light penetration.

encountering fungi during
10 months was just 19%
wherein only 11 packets
of the total were found
germinated. Developed
protocorms and seedlings
were found in these 11
packets. The fungus was
identified as  Tulasnella
sp., Epulorhiza sp., and
Trichoderma sp.
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2007). The literature suggests
that the maximum fungal speci-
ficity bottle neck occurs particu-
larly at the advanced seedling
stage compared to the early ger-
mination stage (Shao et al., 2020;
Bidartondo and Read, 2008b).
Again, such studies are mostly
reported from temperate, Euro-
pean orchid species, mostly het-
erotrophic in particular, and do
not associate with Rhizoctonia
(Bidartondo and Read 2008c;
Tìšitelová et al., 2013a). To sub-
stantiate such claims, more evi-
dence is required by investigat-
ing the developmental stages on
a finer scale.

It has also been reported that
different strains of the same ge-
nus of orchid mycorrhizal fungi
may also induce protocorm for-
mation and seedling develop-
ment with different efficacies
(Zhang et al., 2020b). Empirical
findings show that mycorrhizal
fungi isolated from host
protocorms has ten the germina-
tion and seedling development
(Sebastian et al., 2014; Zhou and
Gao, 2016b; Huang et al., 2018d;
Meng et al., 2019f) compared to
those isolated from other orchid
species or not having a fungal
symbiont (Zi et al., 2014e) or
fungi isolated from closely re-
lated orchid species possibly due
to cross-compatibility between
orchid species (Shao et al., 2020).
Shao et al. (2020) showed that
Tulasnella species isolated from D.
nobile, which is phylogenetically
closely related to D. chrysotoxum
(Xiang et al., 2016), failed to fa-
cilitate germination in the symbi-
otic culture of D. chrysotoxum.
Likewise, a mycorrhizal fungus
isolated from D. devonianum,
which was previously found to
enhance seed germination in D.
devonianum by Huang et al.T
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(2018e), failed to induce protocorms formation in D.
chrysotoxum. In contrast, low specificity was re-
ported by Liu et al. (2010) and Zhang et al. (2012),
who found that different mycorrhizal fungi can pro-
mote germination in the same orchid species.

In in situ culture, it has been reported that orchids
have different symbionts at different stages and that
only a subset of the fungi-promoting germination
phase may support later developmental stages
(Bidartondo and Read, 2008d; Jacquemyn et al.,
2011; Long et al., 2013) whereas in ex situ conditions,
more diverse fungi are involved stimulating early
seed germination (Wang et al., 2011b; Rasmussen et
al., 2015). This ability of orchids to switch their fun-
gal association (McCormick et al., 2004; Tìšitelová et
al., 2013b) causes orchids to switch their association
from one fungal species to another at different de-
velopmental stages. Sufficient literature is available
to support such claims in ex situ conditions; how-
ever, elucidating the roles of diverse fungi in deter-
mining seedling establishment still requires more
experiments in in situ conditions.

Structural changes in seeds during symbiotic
germination

Despite numerous studies on symbiotic germina-
tion, providing considerable information about the
interaction between mycorrhizal fungi and orchid
seeds, structural and ultrastructural changes in par-
ticular (Peterson et al., 1998; Chen et al., 2014), proper
information on sequential changes in seed structure
during symbiotic germination with a defined time
scale is still deficient (Li et al., 2021b). Generally, af-
ter infection, mycorrhizal fungi penetrate the em-
bryo and form hyphal coil”pelotons” enveloped in
the plasma membrane in the host cell. These
pelotons collapse and undergo lysis and digested
products are absorbed by the host cell. That is a gen-
eral idea of what mycorrhizal fungus does, and their
fates after infection. However, such studies have
mostly been performed on green orchids, and very
few have been performed on achlorophyllous or-
chids (Li et al., 2021c).

According to Li et al. (2021d) studied G. elata, the
first developmental stages during symbiotic germi-
nation are characterized by the thickening of the cell
wall with papillae-like structures penetrating the
suspensor end cell, epidermal cells, and cortical cells
of the embryo. Embryo cells continue to enlarge and
become highly vacuolated. After 2 weeks of inocula-
tion, the seed coat ruptured to form protocorms. At

this phase, cells at the apical of the protocorms fre-
quently divided to generate a meristematic zone,
but cells at the basal parts of the protocorms do not
divide further. The protocorms continue to elongate,
and the fungal colonization is restricted to basal
protocorms. Some fungi are digested during this
phase, but many fungal hyphae remain vigorous
within the suspensor end cell. Soon ovoid
protocorms are formed as a result of the continuous
enlargement of the embryo. Epidermal cells and cor-
tical cells are frequently penetrated by fungal hy-
phae, in the due process some are soon digested and
become compressed. In ultrastructural observations
numerous electron-dense tubular networks are vis-
ible, hyphae penetrate enlarged digestion cells, and
the plasmalemma and fungal wall are surrounded
by the radiating endocytic tubules to mark the final
stage of fungal hyphal-breakdown (Wang et al.,
1997). Fungal hyphae appear to be digested through
endocytosis (Li et al., 2021e).

Conclusion

It is well established that orchid mycorrhizal fungi
play a significant role in the life of an orchid from
germination to its further growth and development,
as they help in nutrition and to withstand with biotic
and abiotic stresses. Additionally, it is understood
that orchid mycorrhizal fungi influence the popula-
tion distribution, survival of orchids, and their rar-
ity due to the fungal species specific nature of or-
chids and vice versa. Thus, it is crucial to under-
stand the diverse benevolent mycorrhizal fungi as-
sociated with different orchid species to utilize them
for propagation through symbiotic seed germina-
tion. Although orchids are propagated vegetatively
for commercial production, various empirical find-
ings have reported that orchid seedlings derived
from symbiotic germination or raised under condi-
tions inoculated with orchid mycorrhizal fungi have
better chances of survival even under adverse envi-
ronmental conditions, especially when they are rein-
troduced for conservational works. Germination of
millions of dust-like orchid seeds through symbiotic
germination technique can help bridging the gap
between market demand and supply as well as the
need for orchid conservational works. Both ex situ
and in situ techniques can be used in an integrated
way for more effective for orchid propagation and
mass production. Symbiotic germination thus holds
great potential for orchid propagation from both
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horticultural and conservational perspectives.
Nonetheless,  In comparison to the ex situ approach,
the literature on the in situ technique and its appli-
cation is still limited, and it requires further devel-
opment to make it more convenient in terms of ap-
plicability. Ex situ symbiotic seed germination, on
the other hand, has become one of the most exten-
sively used germination techniques for orchid seed
propagation and conservation efforts. In comparison
to the ex situ approach, the literature on then in situ
technique and its application is still limited, and it
requires further development to make it more con-
venient in terms of applicability. Ex situ symbiotic
seed germination, on the other hand, has become
one of the most extensively used germination tech-
niques for orchid seed propagation and conserva-
tion efforts.
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