Eco. Env. & Cons. 28 (November Suppl. Issue) : 2022; pp. (S353-S361) Copyright@ EM International ISSN 0971–765X

DOI No.: http://doi.org/10.53550/EEC.2022.v28i07s.058

Common wild ethnomedicinal tuberous plants of Asia

Bhagyashali Karle¹, Kevileto Rote², Priya Kumari³, Rakhi Gagotia⁴, Sachin Choudhari⁵, B.L. Manjula^{*6} and Sanjeet Kumar^{7⁺}

¹Department of Botany, New Arts Commerce & Science College, Ahmednagar, Maharashtra, India ²Research, Demonstration & Training Centre, Sechü Zubza (Soil & Water Conservation Department), Kohima, Nagaland, India

³Department of Botany, Himachal Pradesh University, Shimla, India

⁴Department of Botany, Gautam College, Hamirpur, Himachal Pradesh, India ⁵Department of Botany, Rashtrapita Mahatma Gandhi Arts, Commerce and Science College, Saoli, Chandrapur, Maharashtra, India

⁶Department of Botany, Sri Jagadguru Renukacharya College of Science, Arts and Commerce, Race course road, Bengaluru, Karnataka, India

⁷ Biodiversity and Conservation Lab., Ambika Prasad Research Foundation, Odisha, India

(Received 7 April, 2022; Accepted 3 June, 2022)

ABSTRACT

Tuberous plants have always been used as food and medicine since ages. The carbohydrate content and other phytochemical constituents and their tubers make them the best form of nutraceutical. The diversity in the landscape in Asian countries makes the region a good place for the availability of wild tuberous plants. A literature survey and field work has been carried out to find the most common wild medicinal tuberous plants in Asian countries. The results revealed that the most common wild tuberous ethnomedicinal plants belong to the family Zingiberaceae, Araceae, Dioscoreaceae. Identifying these plants could be helpful as an alternative staple food or to meet the food scarcity during famine. With its potential to be used as a nutraceutical, selected tuberous plants can be used in the screening of future drugs.

Key words: Wild tuberous, Medicinal, Asian countries, Food security, Nutraceutical

Introduction

Since the beginning of human civilization, different plant parts have been used by humans for several purposes like food, shelter, firewood, spices, medicines, and some ritual purposes. The knowledge of plants and their benefits has been transferred from generation to generation through the memories and some writings like Unani, Siddha, and Ayurveda. With the urbanization and migration of people to urban areas, the knowledge of wild medicinal plants has very steeply decreased and with negligence, many wild plants are being removed from their natural habitat in the name of development. The knowledge of medicinal plants is now more concentrated in the tribal communities or people living in and around the forest areas. (Hop *et al.*, 2020; Devi and Kumar, 2021). In the traditional system of medicine, plants always have been the first priority in the treatment of different diseases. The traditional uses of the plants are widely accepted throughout the globe and about 80% of the total population depends on the plants for their health care (Poonam and Singh, 2009; WHO, 1993). In most of the developing and developed countries, medicinal plants have much more demand than chemical drugs. Each plant species has a different mode of action to cure diseases. Different plant parts are also used to cure

Eco. Env. & Cons. 28 (November Suppl. Issue) : 2022

different ailments. Mainly leaves, bark, roots and tubers are used in the preparation of medicine (Ummalyama *et al.* 2018).

Among all the wild plants, tuberous plants play a major role in the supplement of food and medicine (Edison et al., 2006). The term tuber means the structure derived from stem or roots (Mauseth, 2012). Stem tuber arises from the thickening of the rhizome and the stolon whereas the tuberous roots are the modification of root. The tuberous plant has a storage organ commonly known as bulb, corm, tuber, or rhizome. The storage organ is used in perennation of a plant to provide energy and nutrients for regrowth during the next growing periods (Swarnkar and Katewa, 2008; Mohanty et al., 2021). Some tuberous plants contain alkaloids, flavonoids, tannins, and phenolic compounds for which they are considered to have medicinal properties. (Behera et al., 2020). Scientific investigation on the medicinal tuberous plants has been initiated in many countries due to its contribution to health care (Devi et al., 2015). Many ethnobotanical studies were also carried out throughout the globe to know the medicinal values of the plant products. Due to the more demand for plant medicine, local people also pay attention to know more about the medicinal value and they are also trying to conserve the medicinal plants (Swarnkar and Katewa 2008). But there is still an ethnobotanical gap in the knowledge about tuberous plants. Keeping the importance of wild ethnomedicinal tuberous plants, an attempt has been made to enumerate the common wild ethnomedicinal tuberous plants through literature and field surveys.

Materials and Methods

The literature survey was carried out from most Asian countries where tuberous plants have been used as traditional ways of medicine. The field survey was carried out in different states of India from 2019 to 2021.

Study area

Asia is the largest continent on the planet, covering up to one third of land area of earth. It consists of different countries, mountains, floral and faunal diversity with the longest coastline. Asia is a home of many plateaus, areas of level high ground. The west Siberian plain, located in Central Russia is one of the largest areas of flat land in the world. Central Asia is covered by a large area called Steppe. Lake Baikal located in Southern Russia is known to be the deepest lake in the world (National Geography, 2017). Asia has mostly diverse climatic features which range from arctic to subarctic in Siberia to Tropical in Southern India and South East Asia. Because of a wide range of climate combined with a highly complex topography and a variety of habitats, Asia is one of the world's richest places in terms of plant diversity (Crowther et al., 2015). Asia's natural landscape is incomparable, hence the continent is recognized as one of the major zones of biodiversity hotspots (Squires, 2013). Plants are the primary sources of human necessities including food, timber, and medicine. Hence, identifying the diversity of tuberous medicinal plants is important as Asian

Fig. 1. Some common wild tuberous medicinal plants A) Zingiber zerumbet B) Curcuma caesia C) Cucurma longa D) Crinum asiaticum E) Curculigo orchioides F) Boesenbergia longiflora G) Cyanotis tuberosa H) Lasia spinosa I) Dioscorea oppositifolia J) Nymphaea nouchali K) Tacca leontopetaloides L) Asparagus racemosus

BHAGYASHALI ET AL

Scientific name	Family	Medicinal Uses	References
Actinoscirpus grossus (L.f.)	Cyperaceae	Used as laxative &	Edison et al., 2006
Acorus calamus L.	Acoraceae	Substitute for ginger	Bhuvaneswari <i>et al.,</i> 2015 and Present Study
Aconitum lethale Griff.	Ranunculaceae	Against inflammation	Sharma and Ramawat, 2016
Adenia hondala (Gaertner) de Wilde	Passifloraceae	Against stomach problems in cattle	Raiesh <i>et al.</i> ,2019
<i>Ampelocissus latifolia</i> (Roxb.) Planch. (Rhizome)	Vitaceae	To cure bone fracture	Swarnkar and Katewa, 2008
Alocasia macrorrhizos (L.) G.Don	Araceae	Relieves scorpion sting	Edison <i>et al,.</i> 2006 and Present Study
Alpinia calcarata (Haw.) Roscoe.	Zingiberaceae	Against gastric trouble and respiratory aliments	Ferdous et al., 2018 and Present Study
Alpinia galanga (L.) Willd.	Zingiberaceae	Against fever & rheumatism	Edison <i>et al</i> , 2006 and Present Study
Alpinia conchigera Griff.	Zingiberaceae	Against stomach upset and fever	Ibrahim <i>et al</i> ,. 2018
Alpinia nigra(Gaertn.)Burtt	Zingiberaceae	Against rheumatism	Present Study
Amorphophallus paeoniifolius (Dennst.) Nicolson	Araceae	Against asthma	Ramanathan et al,. 2014
Amorphophallus paeoniifolius	Araceae	Against bronchitis,	Bhuvaneswari et al.,
(Dennst.) Nicolson		Against tumors, Against seminal	2015; Shinde 2015;
		weakness,Against cattle	Ramanathan <i>et al.</i> , 2014
		diseases, Against abdominal pain	and Present Study
Amorphophallus bulbifer (Roxb.) Blume	Araceae	Against worm infestation	Present Study
Amorphophallus sylvaticus Kunth.	Araceae	Against sexual disorders,	Bhuvaneswari et al.
		Against piles, Against cough	2015; Shinde 2015;
		and inflammation	Ramanathan et al. 2014
Amomum subulatum Roxb.	Zingiberaceae	Against high blood pressure	Present study
Anemarrhena asphodeloides Bunge	Asparagaceae	Against skin diseases	Nalawade <i>et al.</i> 2003
Anthogonium gracile Wall.	Orchidaceae	Relief from cracking heels	Lokho 2012 and Present Study
Aponogeton echinatus Roxb.	Aponogetonaceae	Against leucorrhea	Present study
Arisaema tortuosum (Wall.) Schott	Araceae	Against worm infection	Present study
Arisaema leschenaultii Blume	Araceae	Against complications of snakebite.	Upasani <i>et al</i> . 2018
Asparagus adscendens (Roxb.) Kunth	Asparagaceae	Improves immune system	Sharma and Ramawat 2016
Asparagus racemosus Willd.	Asparagaceae	Against leucorrhea; Against	Ramanathan et al. 2014;
		nervous disorders; Increase	Swarnkar and Katewa
		lactation in nursing mothers	2008 and Present Study
Asparagus sarmentosus L.	Asparagaceae	Roots are aphrodisiac	Edison <i>et al.</i> , 2006
Asplenium nidus L.	Aspleniaceae	Against rheumatism	Nguyen <i>et al.</i> , 2019
Begonia annulata K.Koch	Begoniaceae	Antidote	Wangchuk et al., 2011
Bergenia crassifolia (L.) Fritsch.	Saxifragaceae	Against diarrhea	Shikov et al., 2014
Bongardia chrysogonum (L.) Spach	Berberidaceae	Against epilepsy	Assaf et al., 2013
Borassus flabellifer L.	Arecaceae	Against obesity	Bhuvaneswari <i>et al.,</i> 2015
Canna indica L.	Cannaceae	Against gonorrhea	Swarnkar and Katewa, 2008 and Present Study
<i>Cautleya spicata</i> (Sm.) Baker	Zingiberaceae	Anticoagulant	Wangchuk <i>et al.</i> 2011
Ceropegia bulbosa Roxb. Cheilocostus speciosus (J.Koenig)	Asclepiadaceae	Used as energetic tonic	Shinde, 2015

Table 1. Wild common ethnomedicinal tuberous plants of Asia

S356

Scientific name	Family	Medicinal Uses	References
C.D. Specht.	Zingiberaceae	Against diabetes	Rahman et al., 2013
Chlorophytum borivilianum Santapau & R.R. Fern.	Liliaceae	Against fungal infection	and Present Study Sharma and Ramawat, 2016
Chlorophytum tuberosum Roxb.	Asparagaceae	Used to recover weakness	Shinde, 2015
Cayratia trifolia (Linn.) Domin.	Vitaceae	Used to treat bone fracture	Swarnkar and Katewa, 2008
Coccinia grandis (L.) Voigt.	Cucurbitaceae	Against skin diseases(Rhizome)	Bhuvaneswari <i>et al.,</i> 2015 and Present Study
Colchicum cupanii Guss.	Colchicaceae	Against Gout	Al-douri, 2000
Coleus forskohlii (Poir.) Briq.	Lamiaceae	Against cold, fever and cough	Ramanathan et al., 2014
Colocasia affinis Schott	Araceae	To treat allergy and inflammation	Dev <i>et al.</i> , 2021; Edison <i>et al.</i> , 2006
Colocasia esculenta (L.) Schott	Araceae	Cooked tuber is rubbed for	Ramanathan et al., 2014
		good hair growth; Against	and Present Study
		alopecia & congestion of the	
Colocasia fallar Schott	Aracoao	Apalgosic activity	Edison at al 2006
Colocasia gigantea (Blume) Hook f	Araceae	Cood carbobydrate content &	Ramanathan et al 2014
Colocusia gigantea (Diulite) 1100K I.	Alaceae	use and vegetable	Kalilallallall et ul., 2014
Corallocarnus enigaeus Hoof F	Cucurbitaceae	Against leprosy: Against	Bhuvaneswari <i>et al</i>
Controlar pus epiqueus 11001. 1	Cucuibilaceae	complications of snake hite	2015: Shinde 2015:
		Against tumour	Ramanathan <i>et al</i> 2013,
Corudalis vanhusuo	Papaveraceae	Against gastric ulcer	Tsav and Agrawal.
(Y.H. Chou & Chun C.Hsu)	i up ut cruceue	- Gamer Basare areer	2005
W.I.Wang ex ZYSu & CYWu	۸	A project outbritin	Discourse and a star
Crinum usuticum L.	Amaryindaceae	Against artnritis	2015
<i>Curculigo orchioides</i> Gaertner. effects	Hypoxidaceae	Against piles; Neuroprotective	Sharma and Ramawat 2016 and Present Study
Curcuma aromatica Salisb. Ln. Bon.	Zingiberaceae	To treat sprain & bone fracture	Shankar and Rawat, 2012, Present Study
Curcuma amada Roxb.	Zingiberaceae	Used to cure dropsy; to treat	Swarnkar and Katewa,
Currouma cassia Poyh	Zingihoracoao	Used as a stimulant and	Edison <i>et al.</i> 2006
against asthma	Ziligideraceae	Used as a stillulatit and	Euison et <i>u</i> ., 2000
Curcuma longa L.	Zingiberaceae	Against inflammation	Bhuvaneswari <i>et al.,</i> 2015 and Present Study
Curcuma neilgherrensis Wight	Zingiberaceae	Against cardiac diseases	Present study
<i>Curcuma pseudomontana</i> Grah. Cat.	Zingiberaceae	Against hepatitis	Shinde, 2015
<i>Curcuma zedoaria</i> (Christm.) Roscoe	Zingiberaceae	Against cold, cough and	Edison <i>et al.</i> , 2006 and
Cuanotic tuboroca (Port)	Commolinaceae	Roliovos vomiting	Procent study
Schult. & Schult.f.	Commennaceae	Keneves vonnung	r resent study
Cyclea laxiflora Miers	Menispermaceae	To treat headache	Batugal <i>et al.,</i> 2004
Cyperus rotundus L.	Cyperaceae	Against leprosy; Against stomach problems	Ramanathan <i>et al.</i> , 2014 and Present Study
<i>Dactylicapnos scandens</i> (D.Don) Hutch.S	Papaveraceae	Against diabetes & high blood pressure	Temsutola <i>et al.</i> , 2019
Dahlia coccinea Cav.	Asteraceae	To heal wounds; Against kidney problems	Bhuvaneswari <i>et al.,</i> 2015; Ramanathan <i>et</i> <i>al.,</i> 2014

BHAGYASHALI ET AL

Table 1. Continued ...

Scientific name	Family	Medicinal Uses	References
Dioscorea alata L.	Dioscoreaceae	Used as laxatives; Against indigestion	Bhuvaneswari <i>et al.,</i> 2015; Ramanathan <i>et al.,</i> 2014 and Present Study
Dioscorea belophylla Voigt. Dioscorea bulbifera L.	Dioscoreaceae Dioscoreaceae	Against ulcer Against skin diseases; Against swellings	Present Study Shinde 2015; Sharma and Ramawat Present Study 2016
Dioscorea deltoidea Wall. ex Griseb	Dioscoreaceae	Antioxidant activity	riesent Study2010
Dioscorea esculenta Burk.	Dioscoreaceae	To treat urinary infections; Against rheumatoid arthritis	Bhuvaneswari <i>et al.,</i> 2015; Ramanathan <i>et al.,</i> 2014 and Present Study
<i>Dioscorea floribunda</i> M. Martens & Galeotti	Dioscoreaceae	Used as antifertility	Edison <i>et al.</i> , 2006
Dioscorea hispida Dennst.	Dioscoreaceae	Against piles:	Present Study
Dioscorea oppositifolia L.	Dioscoreaceae	Against skin irritation; Against kidney problems; Used as tonic	Bhuvaneswari <i>et al.,</i> 2015; Ramanathan <i>et al.,</i> 2014 and Present Study
Dioscorea pentaphylla L.	Dioscoreaceae	Used as tonic	Present Study
Dioscorea tomentosa Roxb.	Dioscoreaceae	Used as vegetables	Swarnkar & Katewa 2008 & Present Study
Drynaria quercifolia (L.) J. Smith.	Polypodiaceae	Used as anthelminthic; Against typhoid and Jaundice	Bhuvaneswari <i>et al.,</i> 2015; Ramanathan <i>et al.,</i> 2014
Ensete superbum Roxb.	Musaceae	Against urinary infection	Bhuvaneswari <i>et al.,</i> 2015
Eulophia ochreata Lindl.	Orchidaceae	Against diarrhea	Swarnkar and Katewa, 2008
<i>Euphorbia fusiformis</i> Buch,- Ham.ex D.Don	Euphorbiaceae	Against rheumatic pain	Swarnkar & Katewa 2008
Fritillaria imperialis L.	Liliaceae	Against kidney stone	Present study
Globba marantina L.	Zingiberaceae	Against asthma	Swarnkar and Katewa, 2008 and Present Study
<i>Gloriosa superba</i> L. labour pain	Liliaceae	Against ulcer; Promote	Ramanathan <i>et al.,</i> 2014; Swarnkar and Katewa, 2008
Glycyrrhiza glabra L.	Fabaceae	Anticancer properties	Sharma and Ramawat, 2016
Gymnadenia conopsea (L.) R.Br.	Orchidaceae	Against respiratory problems	Shang <i>et al.</i> , 2017
Gynura pseudochina (L.) DC.	Asteraceae	Against inflammation	Panthang <i>et al.</i> , 1986
Habenaria grandifloriformis Blatt and McCann.	Orchidaceae	Used to increase body strength	Shinde, 2015
Hedychium aurantiacum Wall.	Zingiberaceae	Against Bronchitis	Devi et al., 2015
Hedychium marginatum C.B. Clarke.	Zingiberaceae	Used as stimulant & tonic	Devi et al., 2015
Hedychium spicatum Buch. Ham.	Zingiberaceae	Used for treatment of dyspepsia	Edison <i>et al.</i> 2006
Hedychium coronarium J. Koenig.	Zingiberaceae	Against swelling	Edison <i>et al.</i> 2006 and Present Study
Helianthus tuberosus L.	Asteraceae	Against diabetes	Edison et al., 2006
Hemidesmus indicus (L.) R Br.	Asclepiadaceae	Against skin diseases	Present study
Holostemma ada-kodien Schult.	Apocynaceae	Against diabetes	Sharma and Ramawat, 2016

Scientific name	Family	Medicinal Uses	References
Ipomoea aquatica Forssk.	Convolvulaceae	Used as purgative	Edison <i>et al.,</i> 2006 and Present Study
Ivomoea carnea Jacq.	Convolvulaceae	Reduces Blood pressure	Edison <i>et al.</i> , 2006
Ipomoea digitata L.	Convolvulaceae	Applied to reduce swelling joints	Edison <i>et al.</i> , 2006
Ivomoea alba L.	Convolvulaceae	Roots are purgative	Edison <i>et al.</i> 2006
Jacquemontia paniculata (Burm. f.) Hallier f.	Convolvulaceae	Increase lactation in nursing mothers	Edison <i>et al.</i> , 2006
Kaempferia galanga L.	Zingiberaceae	Against fever & muscle pain	Roosita <i>et al.,</i> 2008 and Present Study
Kaempferia rotunda L.	Zingiberaceae	Against sinusitis	Present study
Lagenandra toxicaria Dalz.	Araceae	Against tuberculosis	Swarnkar and Katewa 2008
Lasia spinosa (L.) Thwaites	Araceae	Against constipation	Maneenoon <i>et al.</i> 2015 & Present Study
Leea indica (Burm.f.) Merr.	Vitaceae	To cure allergy	Swarnkar and Katewa 2008
Leea macrophylla Roxb. Ex. Hornem.	Leeaceae	Against cancer	Swarnkar and Katewa, 2008 & Present Study
Lophatherum gracile Brongn	Poaceae	Increase semen in males	Batugal et al., 2004
Manihot esculenta Crantz.	Euphorbiaceae	Against constipation	Present study
Mirabilis jalapa L.	Nyctaginaceae	Against tumours	Ramanathan et al., 2014
Molineria capitulata (Lour.) Herb.	Hypoxidaceae	To treat wounds	Anderson 1986
Momordica balsamina L.	Cucurbitaceae	Antiviral activity	Swarnkar and Katewa, 2008
Morinda officinalis F.C.How	Rubiaceae	Against kidney problems	Nguyen et al. 2019
Nelumbo nucifera Gaertner.	Nelumbonaceae	Against dysentery	Present study
<i>Nymphea nouchali</i> Burman f.	Nymphaeaceae	Against diabetes	Ramanathan et al. 2014
Ornithogalum umbellatum L.	Asparagaceae	Against stomach pain	Bhuvaneswari <i>et al.</i> 2015
Pergularia daemia (Forssk.) Chiov.	Apocynaceae	Against gonorrhea	Bhuvaneswari <i>et al.</i> 2015
<i>Pueraria tuberosa</i> (Roxb ex Wild.) D.C.	Fabaceae	Against rheumatism & prostrate problems	Present Study
<i>Pueraria montana</i> var. lobata (Willd.) Sanjappa & Pradeep	Fabaceae	Against diarrhea	Lee et al. 2008
Pueraria phaseoloides (Roxb.) Benth.	Fabaceae	Against weakness	Sam et al. 2008
Pupalia atropurpurea Mog.	Amaranthaceae	Antinematodal	Swarnkar and Katewa 2008
Ruellia tuberosa L.	Acanthaceae	Against abdominal pain	Swarnkar and Katewa 2008 & Present Study
Sagittaria sagittifolia L.	Alismataceae	Used as discutient	Present study
Sansevieria roxburghiana Schult. f.	Dracenaceae	Against ear infection	Bhuvaneswari <i>et al.</i> 2015
<i>Sauromatum venosum</i> (Ait.) Kunth snake bite	Araceae	To treat complications of	Swarnkar and Katewa, 2008
Saussurea costus (Falc.) Lipsch.	Asteraceae	Against toothache	Maikhuri et al. 2000
Scripus kysoor L.	Cyperaceae	Against vomiting	Edison et al. 2006
Scirpus lacustris L.	Cyperaceae	Used as astringent & diuretic	Edison et al. 2006
Scirpus maritimus L.	Cyperaceae	Used as astringent	Edison et al. 2006
Schumannianthus dichotomus Roxb. Gagnep	Marantaceae	Against skin diseases	Maneenoon et al. 2015
Sinopodophyllum hexandrum (Royle) T.S. Ying	Berberidaceae	Against tumour growth	Qazi <i>et al.,</i> 2011

BHAGYASHALI ET AL

Table 1. Continued ...

Scientific name	Family	Medicinal Uses	References
Smallanthus sonchifolius (Poepp. & Endl.) H.Rob.	Asteraceae	Against obesity	Sherub et al,. 2021
Solena heterophylla Lour.	Cucurbitaceae	Against cough & headache	AI et al. 2020
Stemona tuberosa Lour.	Stemonaceae	Against nervous disorder	Biswas <i>et al.</i> 2010 & Present Study
<i>Tacca leontopetaloides</i> L. head ache	Dioscoreaceae	Against stomach pain; Cure	Shinde, 2015; Swarnkar and Katewa 2008 & Present Study
Tacca integrifolia Ker Gawl.	Dioscoreaceae	Against Leprosy	Edison <i>et al.</i> 2006
Trapa natans L.	Lythraceae	Antiulcer activity	Swarnkar and Katewa 2008
Trichosanthes cucumerina L.	Cucurbitaceae	To treat complications of snake bite	Swarnkar and Katewa, 2008
<i>Tulipa albanica</i> Kit Tan & Shuka	Liliaceae	To treat bone fracture	Bhuvaneswari <i>et al.</i> 2015
Typhonium roxburghii Schott.	Araceae	Against skin diseases	Edison et al. 2006
Typhonium trilobatum (L.) Schott.	Araceae	Against diarrhea	Sharma and Ramawat 2016
<i>Urginea indica</i> (Roxb.) Kunth	Liliaceae	Against leucorrhoea & respiratory problems	Swarnkar & Katewa 2008 & Present Study
Valeriana jatamansi Jones.	Valerianaceae	Treat nervous disorders	Jugran <i>et al.</i> 2019
Vigna vexillata (L.) Rich.	Fabaceae	To reduce swellings	Present study
<i>Withania somnifera</i> (L.) Dunal	Solanaceae	Against muscle related diseases &	Ramanathan et al.,
		Constipation; Against rheumatism	2014; Swarnkar &
			Katewa 2008
<i>Zanthoxylum myriacanthum</i> Wall. ex Hook. f.	Rutaceae	Against toothache	Present study
Zingiber capitatum Roxb.	Zingiberaceae	Against boils & burns	Present study
Zingiber montanum Roxb.	Zingiberaceae	Against irregular menstruation	Present study
Zingiber zerumbet (L.) Roscoe ex Sm.	Zingiberaceae	Against hypertension	Jadid et al. 2020

countries are home for a huge diversity of tuberous plants.

Results

Tuberous plants play an important role among the rural and tribal communities in Asian countries. They provide food as well as medicine. However, most of the tuberous plants are still unexplored. The present study highlights the medicinal value of 148 species of wild tuberous plants used against different diseases and disorders. Further, there is a need to explore them for future nutraceutical and drug development. Also, considering the nutraceutical properties, such plants can be an alternative food in places where food scarcity is prevalent and can be encouraged to meet the global food problems.

From the literature and field survey, about 139 species have been listed as most common wild me-

dicinal tuberous plants belonging to 51 families. Among them, Zingiberaceae, Araceae, and Dioscoreaceae show the highest number of species followed by Liliaceae, Cyperaceae, Convolvulaceae, Cucurbitaceae, Asparagaceae, Asteraceae, Asclepiadaceae, Orchidaceae, etc. although there are many other families that belong to the wild tuberous medicinal plants.

Discussion

The views of many researchers' concord with our study of medicinal tuberose plants. These plants show biological activities such as analgesic, antimicrobial, hypolipidemic to hepatoprotective and anticancer. Hence storage and propagation of these valuable genetic resources is very important. Recent review work of Sharma & Ramawat, 2016, focus on some tuberous medicinal plants of India. Mathew *et*

al., 2005 also has studied 10 tuberose plants with medicinal value, said that the underground portion of the plant is an officinal part. Collection is tedious in their natural collection. So, cultivation of those plants is necessary to conserve those genetic resources.

Acknowledgement

Authors are thankful to the Divisional Forest Officers of many forest divisions of India and local community.

Conflict of interest

Authors declare no conflict of interest.

References

- AI, N.X.M, Bun, S.S., Ollivier, E. and Thao, D.T.P. 2020. Ethnobotanical study of medicinal plants used by K'Ho-Cil people for treatment of Diarrhea in Lam Dong Province, Vietnam. *Journal of Herbal Medicine*. 19 : 100320.
- Al-douri, N.A. 2000. A survey of medicinal plants and their traditional uses in Iraq. *Pharmaceutical Biology*. 38(1) : 74-9.
- Anderson, E.F. 1986. Ethnobotany of hill tribes of North Thailand. I. *Medicinal Plants of Akha*. 40(1): 38-53.
- Assaf, A.M, Haddadin, R.N, Aldouri, N.A., Alabbassi, R., Mashalla, S., Mohammad, M. and Bustanji, Y. 2013. Anti-cancer, anti-inflamatory and anti-microbial activities of plant extracts used against heamatological tumors in traditional medicine of Jordan. Journal of Ethnopharmacology. 145 (3): 728-736.
- Badola, H.K. 2003. The Himalayas of India: A treasury of medicinal plants under siege. *Biodiversity*. 4(3): 1-13.
- Batugal, P.A., Kanniah, J., Lee, S.Y. and Oliver, J.T. 2004. Medicinal Plants Research in Asia. 1: 1-221.
- Behera, A., Devi, R.S., Pradhan, S., Biswai, S., Jena, P.K., Biswai S.K., Sanjeet Kumar 2020. Phytochemical Analysis and Antioxidant potential of *Costus* speciosus L. European Journal of Medicinal Plants. 31(10): 64-72.
- Bhuvaneswari, R., Ramanathan, R., Krishnapriya, P., Madheswaran, A. and Dhandapani, R. 2015. Survey of wild tuberous medicinal plants of Kolli hills in Namakkal district, Tamil Nadu, India, 3(4): 41-48.
- Biswas, A., Bari, M.A., Roy, M. and Bhaadra, S.K. 2010. Inherited folk pharmaceutical knowledge of tribal people in Chittagon Hill Tracts, Bangladesh. *Indian Journal of Traditional Knowledge*. 9(1): 77-89.
- Devi, R.S. and Sanjeet Kumar, 2021. Wild Food consumed by Ethnic and local communities of Imphal, Manipur State of India. *Biodiversity Conservation and*

Eco. Env. & Cons. 28 (November Suppl. Issue) : 2022

Livelihood Management. pp 409-418.

- Devi, T.I., Devi, K.U. and Singh, E.K. 2015. Wild medicinal plants in the hill of Manipur, India: A traditional therapeutic potential. *International Journal of Scientific and Research Publication*. 5(6): 1-9.
- Edison, S., Unnikrishnan, M., Vimala, B., Pillai, S.V., Sheela, M.N., Sreekumari, M.T. and Abraham, K. 2006. Biodiversity of Tropical Tuber Crops in India. Central Tuber Crops Research Institute. Sreekariyam, Thiruvananthapuram. *NBA Scientific Bulletin Number*. 7: 1-31.
- Ferdous, M., Basher, M.A., Khan, I., Ahmad, F., Sobuz, M.S.I. and Daula, ASU. 2018. Evaluation of phytochemicals, antioxidant and antibacterial potentials of *Alpinia calcarata*. *Journal of Medicinal Plants Studies*. 6(2) : 152-158.
- Hop, N.V., Xiong, C.C., Yun, X.L., Ha, N.T. and Hanh, N.T. 2020. Diversity and indigenous knowledge of using medicinal plants of the Dao people in Ta Dung National Park, Vietnam. *Journal of Medicinal Plants Studies*. 8(1) : 45-49.
- Ibrahim, M., Hossain, M.A., Shajb, M.S. and Rashid, M.A. 2018. Preliminary and pharmaceutical screenings of *Plumbago indica* L. and *Alpinia conchigera* Griff. *Dhaka* University Journal of Pharmaceutical Sciences. 17(1):73-79.
- Jadid, N., Kurniwan, E., Himayani, C.E.S., Andriyani, Prasetyowati, I., Purwani, K.I., Muslihatin, W., Hidayati, D. and Tjahjaningrum, T.D. 2020. An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village. *Indonesia*. 15(7): 1-16.
- Jugran, A.K., Rawat, S., Bhatt, I.D. and Rawal, R.S. 2019. Valeriana jatamansi: An herbaceous plant with multiple medicinal uses. *Phytotherapy Research*. 33(3): 482-503.
- Lee, S., Xiao, C. and Pei, S. 2008. Ethnobotanical survey of medicinal plants at periodic markets of Honghe prefecture in Yunnan Province, SW China. *Journal of Ethnopharmacology*. 117 (2): 362-77.
- Lokho, A. 2012. The folk medicinal plants of the Mao Naga in Manipur, North East India. *International Journal of Scientific and Research Publications*. 2(6): 1-8.
- M. Mohanty, R. Choudhury, Kumar S. and Maggirwar, R. 2021. Phytochemical screening and antibacterial activity of *Dioscorea bulbifera* L. fruits. *Plant Archives*. 21(1): 862-866.
- Maikhuri, R.K., Nautiyal, S., Rao, K.S. and Semwal, R.L. 2000. Indigenous knowledge of medicinal plants and wild edibles among three tribal sub-communities of the central Himalayas, India. *Indigenous Knowledge and Development Monitor.* 8(2): 7-13.
- Maneenoon, K., Khuniad, C., Teanuan, Y., Saedan, N., Prom-in S., Rukieng, N., Kongpool, W., Pinsook, P. and Wongwiwat, W. 2015. Ethnomedicinal plants used by traditional healers in Phatthalung Province,

S360

Peninsular Thailand. *Journal of Ethnobiology and Ethnomedicine*. 11(43): 1-20.

- Mauseth J.D. 2012. *Botany: An Introduction to Plant Biology* (5th edition) Sudbury, MA: Jones and Bartlett Publishers, ISBN 978-1-4496-6580-7.
- Nalawade, S.M., Sagare, A.P., Lee, C.Y., Kao, C.L. and Tsay, H.S. 2003. Studies on tissue culture on Chinese medicinal plant resources in Taiwan and their sustainable utilization. *Botanical Bulletin of Academia Sinica Taipei*. 44 (2): 79-98.
- Nguyen, T.S., Xia, N.H., Chu, T.V. and Sam, H.V. 2019. Ethnobotanical study on medicinal plants in traditional markets of Son La Province, Vietnam. *Forest and Society*. 3(2): 171-192.
- Panthong, A., Kanjanapothi, D. and Tylor, W.C. 1986. Ethnobotanical review of medicinal plants from Thai traditional books, part I: plants with anti-inflammatory, anti-asthmatic and antihypertensive properties. *Journal of Ethnopharmacology*. 18(3): 213-28.
- Qazi, P.H., Rashid, A. and Shawl, S.A. 2011. Podophyllum hexandrum – A versatile medicinal plant. International Journal of Pharmacy and Pharmaceutical Sciences. 3(5): 261-268.
- Rahman, A.H.M.M., Kabir, E.Z.M.F., Islam, A.K.M.R. and Zaman, A.T.M.N. 2013. Medico-botanical investigation by the tribal people of Naogaon district, Bangladesh. *Journal of Medicinal Plants Studies*. 1(4): 136-147.
- Rajesh, E., Selvarau, A., Gopalkrishnan, M., Priya, G. and Sekar, T. 2019. Ethnoveterinary Medicinal Plants used in the Treatment of Livestock Diseases in Kolli Hills, Eastern Ghats of Namakkal district, Tamil Nadu, India. *International Journal for Research in Applied Science & Engneering Technology (IJRASET)*. 7(1): 97-103.
- Ramanathan, R., Bhuvaneswari, R., Indhu, M., Subramanian, G. and Dhandapani, R. 2014. Survey of ethnobotanical observation on wild tuberous medicinal plants of Kollihills, Namakkal district, Tamilnadu, 2(4): 50-58.
- Roosita, K., Kusharto, C.M., Sekiyama, M., Fachrurozi, Y. and Ohtsuka, R. 2008. Medicinal plants used by villagers of a Sundanese community in West Java, Indonesia. *Journal of Ethnopharmacology*. 115(1): 72-71.
- Sam, H.V., Bass, P. and Kebler, P.J.A. 2008. Traditional medicinal plants in Ben EN National Park Vietnam. *Blumea.* 53 : 569-601.
- Sanjeet Kumar, Padma Mahanti, Sakti K. Rath and Patra, J.K. 2017. Qualitative phytochemical analysis and antibacterial activity of *Dioscorea alata* L., a nutraceutical tuber crops of rural Odisha. *J Alt Med Res.* 3(1): 122-122.
- Sanjeet Kumar, 2017. Yam (*Dioscorea* species): Future functional wild food of Tribal Odisha, India. In: *Frontiers in Bioactive Compounds*. 2:186-208.

- Shang, X., Guo, X., Liu, Y., Pan, H., Mia, OX and Zhang, J. 2017. Gymnadenia conopsea (L.) R. Br. A systemic Review of Ethnobotany, Phytochemistry and Pharmacology of Important Asian Folk Medicine. Frontiers in Pharmacology. 8: 24
- Shankar, R. and Rawat, M.S. 2012. *Medicinal Plants of Arunachal Pradesh.* Prashant Gahlot at Valley Offset Printers and Publishers. 1-226.
- Sharma, V. and Ramawat, K.G. 2016. Tuberous medicinal plants of India: Biology and Biotechnology. pp. 311-337.
- Sherub, K., Suberi, B., Chapagai, P.P., Penjor, Jurmey K., Wangdra, K. and Neopaney, M.K. 2021. Ethnobotanical practices among the people of Dagana district, Bhutan. Asian Plant Research Journal. 7(3): 50-59.
- Shikov, A.N., Pozharitskaya, O.N., Makarov, V.G., Wagner, H., Verpoorte, R. and Heinrich, M. 2014. Medicinal plants of the Russian Pharmacopoeia; their history and applications. *Journal of Ethnopharmacology*. 154(3): 481-536.
- Shinde, S.R. 2015. Ethno-Medico-Botanical observations on some wild tuberous plants of Kinwat Forest, Nanded. *International Journal of Life Sciences*. 3(3): 263-266.
- Squires, D. 2013. Biodiversity conservation in Asia. Asia and The Pacific Policy Studies. **1**(1): 144-159.
- Swarnkar, S. and Katewa, S.S. 2008. Ethnobotanical observation on Tuberous Plants from Tribal Area of Rajasthan (India). *Ethnobotanical Leaflets*. 12: 647-66.
- Temsutola, Ngullie O.L. and Vepu. 2019. Ethnomedicinal study of plants used by Chang Naga tribe of Tuensang, Nagaland, India, 4(2): 107-109.
- Tsay and Agrawal. 2005. Tissue culture technology of Chinese Medicinal plants in Taiwan and their Sustainable Utilization. *International Journal of Applied Science and Engineering*. 3(3): 215-223.
- Ummalyama, S.B., Devi, R. S., Patra, J.K. and Sanjeet Kumar, 2018. Ethnobotanical values of *Dioscorea* species available in Eastern Ghats, India. Basic *applied Pharmacy and Pharmacology*. 1(1): 103.
- Ummalyama, S.B. and Devi, R.S. 2019. *Lasia spinosa*: Wild Nutraceutical for formulation of future drugs. *Ethnopharmacology and Biodiversity of Medicinal Plants*. Pages 18, APPLE ACADEMIC PRESS..
- Upasani, M.S., Upasani, S.V., Beldar, V.G., Beldar, C.G. and Gujarathi, P.P. 2018. Infrequent use of medicinal plants from India in snake bite treatment. *Integrative Medicine Research*. 7(1): 9-26.
- Wangchuk, P., Pyne, S.G. and Keller, P.A. 2011. Ethnobotanical authentication and identification of Khrogsaman (Lower elevation medicinal plants) of Bhutan. *Journal of Ethnopharmacology*. 134: 813-23.
- WHO (World Health Organisation) 1993. Summer 9. WHO guidelines for the assessment of herbal medicines. *Herbal Gram*, 28: 13-14.