Eco. Env. & Cons. 28 (November Suppl. Issue) : 2022; pp. (S342-S347) Copyright@ EM International ISSN 0971–765X

DOI No.: http://doi.org/10.53550/EEC.2022.v28i07s.056

# Correlation and Path Coefficient Analysis in chowchow (*Sechium edule* (Jacq.) Swartz.)

M.M. Shulee Ariina<sup>\*1</sup>, S.P. Kanaujia<sup>1</sup>, C.S. Maiti<sup>1</sup>, Pauline Alila<sup>1</sup>, Malini B. Sharma<sup>2</sup> and Animesh Sarkar<sup>1</sup>

<sup>1</sup>Department of Horticulture, <sup>2</sup>Department of Genetics and Plant Breeding, School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema 797 106, Manipur, India

(Received 19 February, 2022; Accepted 31 May, 2022)

# ABSTRACT

Correlation and path analysis were carried out in twenty diverse genotypes of chow-chow collected from different North Eastern states of India. Correlation studies indicated that fruit yield per plant was positively and significantly correlated with days to first flowering, number of nodes at first fruit set, length of internodes, length of leaf, width of leaf, petiole length, number of fruits per plant, fruit length, fruit weight, fruit diameter which indicated the importance of these traits in selection for yield. Path analysis revealed that maximum positive direct effect on fruit yield per plant was imposed by fruit weight, number of fruits per plant and number of nodes at genotypic level. This indicated that these are the real independent characters and have maximum contribution towards increase in fruit yield per plant.

Key words: Chow-chow, Correlation, Path analysis, Independent and fruit yield.

## Introduction

Chow-chow (*Sechium edule* (Jacq.) Sw.] also known as Chayote is an underutilized crop of family Cucurbitaceae, is native to Central America and humid tropical region of Mexico. In India, the crop was introduced by the Western Missionaries (Singh *et al.*, 2012) and nowadays it is widely distributed along the Himalayan states and adjoining areas of Myanmar, Bhutan and Nepal. It is basically used for human consumption. In addition to the fruits; stems, tender leaves and tuberous roots are also eaten. Besides, fruit extract also has antihypertensive effect, antibacterial, antifungal, antioxidant (Cadena-Iniguez *et al.*, 2013).

It is very popular among the tribals of NEH regions owing to its hardiness, profuse fruiting with minimum care and its multiple uses. Though, it is native of Mexico but considerable diversity is found in North East region. Mizoram is the leading state with an estimated area of 845 ha and 10985 MT production (Sanwal, 2008). North East has good genetic variability for various traits in chow-chow and not much exploration has been taken to tap the diversity till now. So there is need to develop a variety (ies) with good qualitative and yield traits, suitable for cultivation in this region.

Thus, keeping in view, the present research work has been conducted to study the correlation and path analysis in 20 genotypes of chowchow.

# Materials and Methods

The present study was carried out at Horticulture Research farm, SASRD, Medziphema, Nagaland. It is situated at 25°45′43″ N latitude and 93°53′04″ E

longitude at an elevation of 305 m above the sea level, bringing sub-tropical climate. The preparation of the field was done by tractor-drawn cultivator followed by two cross-harrowing to pulverize the soil and finally the field was leveled with planker. Field was divided in to treatments replications with randomized block design. Twenty genotypes of chow-chow from different places of North Eastern Region have been collected to conduct the experiment (Table 1). Seeds are sown in hills on raised bed along with channels or furrows. Dig pits of 45 cm x 45 cm x 45 cm at a spacing of 1m x 1m. Fully matured and sprouted fruits collected from high yielding vines were planted in pits @ 1 pit<sup>-1</sup>. Five randomly selected equally competitive plants from each row in each replication were tagged for the purpose of recording the observation on 21 characters viz. vine length, days to first flowering, number of nodes at first fruit set, length of internodes, length of leaf, width of leaf, petiole length, no. of fruits/ plan, fruit weight, fruit length, fruit diameter, calcium, fat, Vit. C, TSS, moisture, carbohydrate, protein, crude fibre, yield per plant and yield per ha. The genotypic and phenotypic correlation coefficient of yield and quality contributing traits were estimated as per described method Al-Jibouri et al. (1958). The direct and indirect effect was estimated as per the method of Wright (1921) and elaborated

**Table 1.** Details of the genotypes and their source

by Dewey and Lu (1959) respectively.

#### **Results and Discussion**

The phenotypic and genotypic correlation coefficients among different characters were worked out in all possible combinations (Table 2). In general, it was observed that genotypic correlation coefficient (r) values were higher in magnitude than phenotypic correlation coefficient (r<sub>p</sub>) values. Vine length showed positive and significant correlation (0.5439 P, 0.5462 G) with width of leaf. Days to first flowering showed positive and significant phenotypic correlation with number of nodes at first fruit set (0.4477 P, 0.4492 G) and length of internodes (0.4620 P, 0.4662 G) and length of leaf (0.4467). However, days to first flowering showed negative and significant correlation with fruit diameter (-0.4715) at genotypic level. Number of nodes at first fruit set showed positive and significant correlation with days to first flowering (0.4477 P, 0.4492 G). Length of internodes showed positive and significant correlation with days to first flowering (0.4620 P, 0.4662 G), width of leaf (0.5343 P, 0.5396 G) and fruit weight (0.4956 P, 0.5002 G). Width of leaf showed positive and significant correlation with vine length (0.5439 P, 0.5462 G), length of internodes (0.5343 P, 0.5396 G), fruit length (0.5187 P, 0.5322 G) and fruit diam-

| Sl. No. | Genotypes | Place of Collection                    | Latitude, Longitude & Altitude   |
|---------|-----------|----------------------------------------|----------------------------------|
| 1.      | G-1       | Siiro village, Ziro, Arunachal Pradesh | 27°31′9′′N, 93°50′23′′E, 1706 m  |
| 2.      | G-2       | Tuichang, Champhai Dist., Mizoram      | 23°15′30′′N, 92°57′35′′E, 1678 m |
| 3.      | G-3       | Mao-Gate, Senapati Dist., Manipur      | 25°30′47′′N, 94°8′4′′E, 2452 m   |
| 4.      | G-4       | Hong village, Ziro, Arunachal Pradesh  | 27°31′18′′N, 93°50′41′′E, 1702 m |
| 5.      | G-5       | Pfutsero, Phek Dist., Nagaland         | 25°34′4′′N, 94°18′12′′E, 2133 m  |
| 6.      | G-6       | Hundung Village, Ukhrul Dist., Manipur | 25°4′46″N, 94°21′7″E, 1656 m     |
| 7.      | G-7       | Kohima Village, Kohima Dist., Nagaland | 25°40′47′′N, 94°6′58′′E, 1449 m  |
| 8.      | G-8       | Mawkriah, East Khasi Hills, Meghalaya  | 25°30′47′′N, 91°47′16′′E, 1529 m |
| 9.      | G-9       | Nongpiur, East Khasi Hills, Meghalaya  | 25°32′37′′N, 91°48′46′′E, 1518 m |
| 10.     | G-10      | Makhel, Senapati Dist., Manipur        | 25°27′54′′N, 94°9′9′′E, 2118 m   |
| 11.     | G-11      | Kaibi, Senapati Dist., Manipur         | 25°28′4′′N, 94°9′47′′E, 2231 m   |
| 12.     | G-12      | Khoupum, Tamenglong Dist., Manipur     | 24°41′17′′N, 93°26′6′′E, 1160 m  |
| 13.     | G-13      | Punanamei, Senapati Dist., Manipur     | 25°31′16′′N, 94°9′13′′E, 2459 m  |
| 14.     | G-14      | Tuirot, Namchi, Šikkim                 | 27°9′46′′N, 88°22′34′′E, 1335 m  |
| 15.     | G-15      | Tamei, Tamenglong Dist., Manipur       | 25°9′44′′N, 93°40′53′′E, 1330 m  |
| 16.     | G-16      | Silesih, Aizawl, Mizoram               | 23°48′29′′N, 92°44′1′′E, 1142 m  |
| 17.     | G-17      | Medziphema, Dimapur Dist., Nagaland    | 25°46′3′′N, 93°53′1′′E,368 m     |
| 18.     | G-18      | Tenning, Peren Dist., Nagaland         | 25°20′43′′N, 93°39′42′′E, 1503 m |
| 19.     | G-19      | Vidima, Dimapur Dist., Nagaland        | 25°47′28′′N, 93°41′53′′E, 157 m  |
| 20.     | G-20      | Makhan, Senapati Dist., Manipur        | 25°26′43′′, 94°6′17′′E, 1671 m   |

| Character                                |             | Vine<br>length | Days<br>to first<br>flowering | No. of<br>nodes<br>at first<br>fruit | Length of<br>internodes | Length<br>of Leaf | Width<br>of leaf | Petiole<br>length          | fruits/<br>plant   | Fruit<br>weight   | Fruit<br>length            | Fruit<br>diameter              | Calcium            |
|------------------------------------------|-------------|----------------|-------------------------------|--------------------------------------|-------------------------|-------------------|------------------|----------------------------|--------------------|-------------------|----------------------------|--------------------------------|--------------------|
| Vine length                              |             | 1.0000         | 0.3689                        | 0.7873                               | 0.8473<br>0 8657        | 0.6457            | 0.5439*          | 0.5935                     | -0.0181            | 0.3929            | 0.2626                     | 0.1142                         | 0.0393             |
| Days to first flowering                  | י בי ט      | ΠΠΠΠ           | 1.0000<br>1.0000              | 0.4477*                              | 0.4620*<br>0.4620*      | 0.4422<br>0.4422  | 0.3488           | 0.0400<br>0.3174<br>0 3464 | -0.1078            | 0.4302            | 0.2704<br>0.4000<br>0.4119 | -0.3598<br>-0.3598<br>-0.4715* | 0.0829             |
| Number of nodes at                       |             |                | 0000-1                        | 1.0000                               | 0.8246                  | 0.7773            | 0.7526           | 0.6863                     | -0.2022            | 0.4105            | 0.3554                     | 0.0699                         | -0.0555            |
| first fruit set<br>I anoth of internodes | <u>ں</u> م  |                |                               | 1.0000                               | 0.8284<br>1 0000        | 0.7902            | 0.7581           | 0.7448                     | -0.2054<br>-0.2829 | 0.4122<br>0.4956* | 0.3662                     | 0.0961<br>-0 1912              | -0.0506            |
|                                          | J U         |                |                               |                                      | 1.0000                  | 0.6616            | $0.5396^{*}$     | 0.8221                     | -0.2915            | 0.5002*           | 0.4150                     | -0.2235                        | 0.0264             |
| Length of leaf                           | <u>م</u> رو |                |                               |                                      |                         | 1.0000            | 0.9072           | 0.5726<br>0.6430           | -0.3080            | 0.6863<br>0.6954  | 0.6037                     | 0.2442<br>0.2980               | -0.0150            |
| Width of leaf                            | D (         |                |                               |                                      |                         |                   | 1.0000           | 0.5813                     | -0.2288            | 0.6513            | 0.5187*                    | 0.3549                         | -0.1037            |
|                                          | U           |                |                               |                                      |                         |                   | 1.0000           | 0.6446                     | -0.2282            | 0.6544            | 0.5322*                    | $0.4477^{*}$                   | -0.1081            |
| Petiole length                           | L (         |                |                               |                                      |                         |                   |                  | 1.0000                     | -0.3164            | 0.4735*           | 0.4254                     | -0.1497                        | 0.0738             |
| No. of fruits/plan                       | ים נ        |                |                               |                                      |                         |                   |                  | 1.0000                     | 1.0000             | 0.6783 -0.6783    | $0.4646^{*}$ -0.6213       | -0.2282<br>0.3191              | cecu.u<br>-0.1199  |
| 4                                        | U           |                |                               |                                      |                         |                   |                  |                            | 1.0000             | -0.6850           | -0.6326                    | $0.4738^{*}$                   | -0.1261            |
| Fruit weight                             | <u>م</u> رو |                |                               |                                      |                         |                   |                  |                            |                    | 1.0000            | $0.8704 \\ 0.8804$         | -0.0453<br>-0.0584             | -0.0920<br>-0.0919 |
| Fruit length                             | Ρ           |                |                               |                                      |                         |                   |                  |                            |                    |                   | 1.0000                     | -0.1388                        | -0.0460            |
| Fruit diamatar                           | <u>ں</u> م  |                |                               |                                      |                         |                   |                  |                            |                    |                   | 1.0000                     | -0.1908                        | -0.0485            |
|                                          | - U         |                |                               |                                      |                         |                   |                  |                            |                    |                   |                            | 1.0000                         | -0.1658            |
| Calcium                                  | Ъ           |                |                               |                                      |                         |                   |                  |                            |                    |                   |                            |                                | 1.0000             |
| ليتمام سمية المانيا                      | <u>م</u> ن  | 0 5151         | 0 5400                        | 0.1200                               | 1171 U                  | 26220             | 0 6597           | 1025.0                     |                    | 7010 U            | 0 75 80                    | 71117                          | 1.0000             |
| ricia per pian                           | - U         | 0.5214         | 0.5575                        | 0.4349                               | 0.4726                  | 0.6782            | 0.6667           | 0.3987                     | -0.2970            | 0.8831            | 0.7726                     | 0.1718                         | -0.1814            |
|                                          |             |                |                               |                                      |                         |                   |                  |                            |                    |                   |                            |                                |                    |

S344

| <b>Table 3.</b> Phenotypic (P) and genotypic (G) pa genotypes of chowchow                                      | nd genot<br>wchow | typic (G) p        | ath coeffi                    | cients indic             | th coefficients indicating direct and indirect effects of components characters on fruit yield in twenty two | t and indi           | rect effects       | of compo          | nents char                 | acters on                | fruit yield        | l in twenty       | r two              |
|----------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|----------------------|--------------------|-------------------|----------------------------|--------------------------|--------------------|-------------------|--------------------|
| Character                                                                                                      |                   | Vine<br>length     | Days to<br>first<br>flowering |                          | Number Length of<br>of nodes internodes<br>at first<br>fruit                                                 | Length<br>of leaf    | Width<br>of leaf   | Petiole<br>length | No. of<br>fruits/<br>plant | Fruit<br>weight          | Fruit<br>length    | Fruit<br>diameter | Calcium            |
| Vine length                                                                                                    | ط ت               | -0.0277            | -0.0102                       | -0.0218<br>-0.0714       | -0.0235                                                                                                      | -0.0179              | -0.0151<br>-0.0494 | -0.0165           | 0.0005                     | -0.0109<br>-0.0356       | -0.0073            | -0.0032           | -0.0011            |
| Date of first flowering                                                                                        | ) ה ני            | 0.0165             | 0.0447                        | 0.0200                   | 0.0206                                                                                                       | 0.0197               | 0.0156             | 0.0142            | -0.0048                    | 0.0192                   | 0.0179             | -0.0161           | 0.0037             |
| Number of nodes at                                                                                             |                   | 0.3534             | 0.2010                        | 0.4489                   | 0.3701                                                                                                       | 0.3489               | 0.3378             | 0.3081            | -0.0908                    | 0.1843                   | 0.1595             | 0.0314            | -0.0249            |
| first fruit<br>Length of internodes                                                                            | ں م               | 0.4672<br>-0.1231  | 0.2657<br>-0.0671             | <b>0.5915</b><br>-0.1198 | 0.4900<br>-0.1452                                                                                            | 0.4674<br>- $0.0938$ | 0.4484<br>-0.0776  | 0.4405<br>-0.1097 | -0.1215<br>0.0411          | 0.2438<br>-0.0720        | 0.2166<br>-0.0580  | 0.0568<br>0.0278  | -0.0299<br>-0.0023 |
|                                                                                                                | , U               | -0.1352            | -0.0737                       | -0.1309                  | -0.1581                                                                                                      | -0.1046              | -0.0853            | -0.1299           | 0.0461                     | -0.0791                  | -0.0656            | 0.0353            | -0.0042            |
| Length of leaf                                                                                                 | പ്                | -0.1185            | -0.0811<br>-0.0971            | -0.1426                  | -0.1185<br>-0.1438                                                                                           | -0.1835<br>-0.2174   | -0.1664<br>-0.1983 | -0.1051           | 0.0565<br>0.0668           | -0.1512                  | -0.1108<br>-0.1348 | 0.0448<br>-0.0648 | 0.0028<br>0.0046   |
| Width of leaf                                                                                                  | ) L               | -0.1445            | -0.0927                       | -0.2000                  | -0.1420                                                                                                      | -0.2410              | -0.2657            | -0.1544           | 0.0608                     | -0.1730                  | -0.1378            | -0.0943           | 0.0275             |
|                                                                                                                | IJ P              | -0.1859            | -0.1192                       | -0.2581                  | -0.1837                                                                                                      | -0.3105              | -0.3404            | -0.2195           | 0.0777                     | -0.2228                  | -0.1812            | -0.1524           | 0.0368             |
| Petiole length                                                                                                 | ں ب               | -0.0530<br>-0.0647 | -0.0284<br>-0.0346            | -0.0613<br>-0.0745       | -0.0822                                                                                                      | -0.0643              | -0.0644            | -0.0893           | 0.0283<br>0.0354           | -0.0423<br>-0.0514       | -0.0380<br>-0.0464 | 0.0134<br>0.0228  | -0.0059<br>-0.0059 |
| No. of fruits/plant                                                                                            | <u>с</u> (        | -0.0123            | -0.0730                       | -0.1370                  | -0.1916                                                                                                      | -0.2086              | -0.1550            | -0.2143           | 0.6773                     | -0.4595                  | -0.4208            | 0.2161            | -0.0812            |
| Fruit weight                                                                                                   | 5 C               | -0.0115<br>0.6141  | -0.0783<br>0.6724             | -0.1545<br>0.6417        | -0.2193<br>0.7746                                                                                            | -0.2311<br>1.0728    | -0.1716<br>1.0180  | -0.2661<br>0.7401 | <b>0.7522</b><br>-1.0603   | -0.5153<br><b>1.5631</b> | -0.4759 $1.3605$   | 0.3563<br>-0.0709 | -0.0949<br>-0.1438 |
|                                                                                                                | IJ r              | 0.6767             | 0.7425                        | 0.7082                   | 0.8592                                                                                                       | 1.1947               | 1.1241             | 0.8834            | -1.1768                    | 1.7178                   | 1.5123             | -0.1003           | -0.1578            |
| Fruit length                                                                                                   | <u>ں</u> ب        | 0.0050             | 9T00.0-                       | 0.0068-0.0068            | 0.0077<br>-0.0077                                                                                            | 0.0115<br>-0.0115    | 1200.0-<br>-0.0099 | 0.0086            | -0.0118<br>0.0118          | 0.0034<br>-0.0164        | 0.0040<br>-0.0186  | -0.0036<br>0.0036 | -0.0009            |
| Fruit diameter                                                                                                 | <u>م</u> ر        | -0.0071            | -0.0224                       | 0.0044                   | -0.0119                                                                                                      | 0.0152               | 0.0221             | -0.0093           | 0.0199                     | -0.0028                  | -0.0086            | 0.0623            | -0.0075            |
| Calcium                                                                                                        | <u>م</u> ر        | 0.0021             | 0.0045                        | -0.0030                  | 0.0000                                                                                                       | 10.008               | -0.0056            | 0.0040            | -0.0065                    | -0.0050                  | -0.0025            | -0.0065           | 0.0539             |
|                                                                                                                | IJ                | 0.0033             | 0.0068                        | -0.0040                  | 0.0021                                                                                                       | -0.0017              | -0.0086            | 0.0047            | -0.0100                    | -0.0073                  | -0.0039            | -0.0132           | 0.0795             |
| Yield per plant                                                                                                | ط <u>ر</u>        | 0.5151             | 0.5575                        | 0.4309<br>0.4349         | 0.4677<br>0.4726                                                                                             | 0.6623               | 0.6582<br>0.6667   | 0.3694<br>0.3987  | 0.2804                     | 0.8786<br>0.8831         | 0.7580             | 0.1147<br>0.1718  | -0.1797<br>-0.1814 |
| Phenotypic Residual effect = 0.0988; Genotypic Residual effect= 0.0496; Diagonal values indicate direct effect | t = 0.098         | 8; Genotyr         | oic Residu                    | al effect= 0             | .0496; Diag                                                                                                  | ronal value          | es indicate        | direct effe       | ct.                        |                          |                    |                   |                    |

Phenotypic Kesidual effect = 0.0985; Genotypic Kesidual effect= 0.0496; Diagonal values indicate direct effect.

# SHULEE ARIINA ET AL

eter (0.4477 G). Petiole length showed positive and significant correlation with fruit weight (0.4735 P, 0.5142 G) and fruit length (0.4646 G).

Fruit weight showed positive correlation with length of internodes (0.4956 P, 0.5002 G) and petiole length (0.4735 P, 0.5142 G). Fruit length showed positive correlation with width of leaf (0.5187 P, 0.5322 G) and petiole length (0.4646 G). Fruit diameter showed correlation with width of leaf (0.4477 G) and number of fruits per plant (0.4738 G) and negative correlation with days to first flowering (-0.4715 G).

These findings clearly indicated that genotypic correlations were of higher magnitude to the corresponding phenotypic ones, thereby establishing strong inherent relationship among the characters studied. The low phenotypic value might be due to appreciable interaction of the genotypes with the environments. Hence, direct selection for these traits may lead to development of high yielding genotypes of chowchow. Hence, direct selection for these traits may lead to the development of high yielding genotypes of chowchow. These findings were in conformity with Sanwal *et al.* (2008) and Verma *et al.* (2017) in chow-chow.

Path coefficient analysis at phenotypic and genotypic level was worked out to study the effect of various traits on yield per plant. The results have been presented in Table 4.3. A perusal of phenotypic path coefficient analysis showed that maximum direct positive effect on yield per plant was imposed by fruit weight (1.563 P, 1.717 G) followed by number of fruits per plant (0.677 P, 0.752 G), number of nodes at first fruit set (0.448 P, 0.591 G), fruit diameter (0.062 P), calcium (0.053 P), days to first flowerEco. Env. & Cons. 28 (November Suppl. Issue) : 2022

ing (0.044 P) and fruit length (0.004 P). While maximum negative direct effects on yield per plant were recorded for width of leaf (-0.265 P, -0.340 G), length of leaf (-0.183 P, (-0.217 G), length of internodes (-0.145 P, -0.158 G) and vine length (-0.027 P).

The maximum positive indirect effect on yield per plant was imposed by fruit length through fruit weight (1.360 P, 1.152 G), length of internodes through number of nodes (0.370 P, 0.490 G), length of leaf through number of nodes at first fruit set (0.348 P, 0.467 G), width of leaf through number of nodes at first fruit set (0.337 P, 0.448 G), petiole length through number of nodes at first fruit set (0.308 P) and fruit diameter through number if fruits per plant (0.216 P). Maximum negative indirect effect on yield per plant was imposed by characters like fruit weight through number of fruits per plant (-0.459 P, -0.515 G), fruit length through number of fruits per plant (-0.420 P, -0.475), width of leaf through length of leaf (-0.166 P), petiole length through width of leaf (-0.154 P) and fruit weight through width of leaf (-0.222 G). Residual effect at phenotypic level was observed to be 0.0988 and genotypic level at 0.0496.

The present study suggest that more emphasis should be given to selecting genotypes having fruit weight, number of fruits per plant, number of nodes at first fruit set, fruit diameter fruit weight, number of fruits per plant, number of nodes at first fruit set and fruit diameter. Directly or indirectly all characters showed positive effect on fruit yield per plant, which is in confirmation to the findings of Ahmed *et al.* (2005) in bottle gourd, Sanwal *et al.* (2008) in chow-chow, Muralidharan *et al.* (2013) and Oliveira and Oliveira (2021). Hence these traits can be used

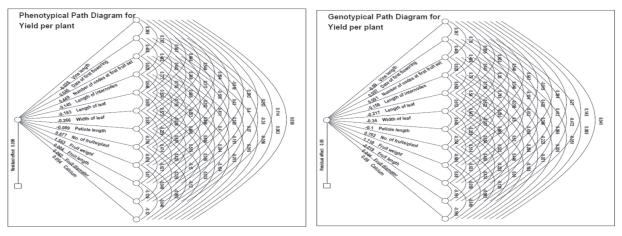



Fig. 1. Direct and indirect effect of component characters on fruit yield in chowchow.

# SHULEE ARIINA ET AL

for selection in chowchow to bring about improvement in yield.

# References

- Ahmed, N., Hakeem, Z. A., Singh, A. K. and Afroza, B. 2005. Correlation and path coefficient analysis in bottle gourd. *Haryana Journal of Horticultural Sciences*. 34(1): 104-106.
- Al-Jibouri, A., Miller, P.A. and Robison, H. F. 1958. Genotypic and environmental variation and covariation in upland cotton crops of inter-specific origin. *Agronomy Journal*. 50: 626-636.
- Cadena-Iniguez, J., Soto-Hernandez, M., Torres-Salas, A., Aguiniga-Sanchez, I., Ruiz-Posadas, L. and Rivera-Martinez, A. R. 2013. The anti-proliferative effect of chayote varieties [Sechium edule (Jacq) Sw.] on tumour cell lines. Journal of Medicinal Plant Research. 7: 455–460.
- Dewey, D. R. and Lu, K. H. 1959. A correlation and path coefficient analysis of components of crested wheat grass seed production. *Agronomy Journal*. 51: 512-515.

- Muralidhran, B., Kanthaswany, V. and Sivakumar, K. 2013. Correlation and path analysis studies in bottle gourd [Lagenaria siceraria (Mol.) Standl.]. In: Proceedings of National symposium on abiotic and biotic stress management in Vegetable Crops. Ind. Soc. Veg. Sci. 69.
- Oliveira, J.T. and Oliveira, R.A. 2021. Path analysis of physical attributes of chayote fruit. *Engenharia Agrícola, Jaboticabal.* 41(4): 468-474.
- Sanwal, S.K., Yadav, R.K., Singh, P.K. and Rai, N. 2008. Variability and genetic diversity studies in indigenous chow-chow genotypes of northeast India. *Indian Journal of Horticulture*. 65(2): 167-170.
- Singh, B.K., Pathak, K.A. and Ngachan, S.V. 2012. Exploring underutilized chow–chow in Mizoram. *Indian Horticulture*. 57(5): 3–5.
- Verma, V.K., Pandey, A., Jha, A.K. and Ngachan, S.V. 2017. Genetic characterization of chayote [Sechium edule (Jacq.) Swartz.] landraces of North Eastern Hills of India and c onservation measure. Physiology and Molecular Biology of Plants. 23(4): 911–924.
- Wright, S. 1921. Correlation and causation. Journal of Agricultural Research. 20: 557-585.