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ABSTRACT

Salinity stress had a direct impact on rice (Oryza sativa L.) growth and physiological features throughout
the early stages of development. The current study aimed to investigate the influence of Zinc oxide
nanoparticles (ZnO-NPs) in the rice germination stage during salinity stress because the germination and
seedling stage is critical for the correct development and growth of plants. The different concentrations of
NaCl and ZnO NPs (T1-60 mM NaCl, T2-80 mM NaCl, T3-100 mM NaCl, T4-60 mM NaCl+50 ppm ZnO NPs,
T5-80 mM NaCl+50 ppm ZnO NPs and T6-100 mM NaCl+50 ppm ZnO NPs) improve the germination rate
in rice during salinity stress. We conducted our experiment in a landrace of rice Kargi and salinity tolerance
rice variety CSR 30. The current study’s findings reveal that ZnO NPs have a significant effect in reducing
salt stress during rice germination.
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Introduction

The most significant abiotic factor that directly im-
pacts plant growth and development is salinity
(Hafsi et al., 2010; Parida and Das, 2005). Shortage of
water in semi-arid and arid regions with high tem-
peratures can cause the salinity problem that affects
staple crop production like rice etc. (Kumar et al.,
2021; Minhas et al., 2017). Salinity stress affects vari-
ous biological functions of plants, e.g., photosynthe-
sis, transpiration rate, stomatal conductance, cellular
metabolism, stomata etc., decreasing these functions
can directly inhibit the growth of plants

(Kordrostami and Rabiei, 2019). The significant ef-
fect of salinity stress is causing osmotic stress due to
the higher accumulation of ions that also cause oxi-
dative stress that limits the water availability for the
plants, and water unavailability has affected the
mobilization of stored reserves of seeds that prevent
or inhibit their germination (Ibrahim, 2016). Seed
germination is a critical period of plants during their
initial life cycle stage. If this period gets affected by
salinity, then delaying the early growth of seed de-
creases the germination of plants that affect the yield
of crops (Hussain, et al., 2018). Zinc is the most im-
portant element for plant growth and development,
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as it aids in the activation of over 300 enzymes.
These enzymes participate in various biochemical
activities, e.g., photosynthesis, respiration, metabo-
lism of carbohydrates, membrane biosynthesis pro-
cess (Manea et al., 2019; Vojodi Mehrabani et al.,
2017). All of these metabolic activities that directly
influence the growth and development, as well as
seed germination and seedling development, can be
halted by a zinc deficit. (Sharma et al., 2021a;
Srivastav et al., 2021).

Rice  is a widely consumed dominant food world-
wide, with more than half of the world’s population
eating rice on a daily basis. Rice, like other signifi-
cant cereal crops like maize and wheat, is a salt-sen-
sitive cereal crop, and the sensitivity of rice crops
varies from variety to variety (Hussain, Cao, Zhong,
Zhu, Khaskheli, Fiaz, Zhang, Jin, et al., 2018; Munns
and Tester, 2008). Rice germination and seedling
stage are the utmost vulnerable to salinity stress,
which impacts their entire life cycle and productiv-
ity (Munns and  Tester, 2008).

Treatment with various substrate types like
nanoparticles (NPs) can enhanceseed germination
by improving uptake of water andmobilization of
stored nutrients reserves of seeds (Ibrahim, 2016;
Srivastav et al., 2021). Nanoparticles are synthesized
by naturally or engineered processing methods with
higher bioactive and biosafety properties, and the
size of nanoparticles is below  100 nm with elevated
surface to volume ratio (Baz et al., 2020; Tripathi et
al., 2017; Zaytseva and Neumann, 2016). NPs are
rapidly uptake by plants tissue. Because of their size
easily enters into plant cells through various plant
organs, e.g., root, shoot, epidermis, cuticle, hydath-
odes, stomata, root tips, root junctions, and stigma,
wounded or other pore areas of the plant (Dietz and
Herth, 2011). ZnO-NPs are the most prominent NPs
widely used in plant science research, and ZnO-
NPs are also utilised to reduce the effects of salt
stress and boost the rate of seed germination.
(Mahajan et al., 2019; Mishra, 2020; Ragab et al.,
2022). Our study aims to investigate the response of
a landrace and salt-tolerance rice genotype Kargi
and CSR 30 under different concentrations of NaCl
levels and ZnO-NPs during the germination and
seedling phase.

Materials and Methods

NPs preparation

For this experiment commercial grade zinc oxide

(ZnO) NP powder (particle size < 50 nm) was ob-
tained from Sisco Research Laboratories (SRL)
Pvt.Ltd, Maharashtra. 50 ppm solution of ZnO-NPs
was prepared utilizing the procedure adopted from
Rajput et al. (2021) with the help of sonicator.

Germination Experiment

Kargi landrace rice seed was collected from a farmer
from village Pauha,post-Belasin, Machhlishahr,
Jaunpur, Uttar Pradesh, India, and CSR 30 salt toler-
ance rice genotype was obtained from Basmati Ex-
port Development Foundation, Meerut, India. The
seeds of both genotypes were sterilized in 0.01%
HgCl2(2 min) and washed with distilled water. We
performed a Petridish experiment for this used
Tarsons 90 (diameter) X 14 (H) mm catalog number-
460090.10 seeds. Both rice genotypes were trans-
ferred on Whatman No. 2 filter paper and watered
with varying concentrations of NaCl and ZnO-NPs
solution (All treatments were performed in tripli-
cate)  and transferred into growth chamber at 28 ± 1
°C with relative humidity 75-80%, and 14h/8h pho-
toperiod. To the end of germination, the plants were
watched for 9 days. The treatment of NaCl and
ZnO-NPs are followedbelow:
T0: Control
T1: 60 mM NaCl
T2: 80 mM NaCl
T3: 100 mM NaCl
T4: ZnO NPs (50 ppm) + 60 mM NaCl
T5: ZnO NPs (50 ppm) + 80 mM NaCl
T6: ZnO NPs (50 ppm) + 100 mM NaCl

Germination Evaluation

We evaluated the following parameters:

Germination percentage (GP)

GP = (Number of normally germinated seeds ÷ To-
tal number of seeds sown) ×100   (1)
GP was calculated according to Kandil et al. (2012).

Germination index (GI)

GI =  (Gt/Tt) (2)
wherethe mean number of germinated seeds on day
t, and Tt is the number of days (Hakim et al., 2010;
Sharief, 2012).

Relative seed germination Rate (RGR)

RGR=(SC\SS)×100      (3)
Where SC is the number of seeds germinated in

control, and SS is the number of germinated seeds in
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treatment (Germination and Growth Characteristics of
Mungbean Seeds (Vigna Radiata L.) Affected by Synthe-
sized Zinc Oxide Nanoparticles - Inpressco, n.d.).

Statistical Analysis

The experiment was carried out in a completely ran-
domized design (CRD)with three replicates of each
treatment. The statistical analysis was performed
using MS Excel. A p-value  0.05 (or  0.01) in a
Student’s t-test was used to evaluate statistical
significance(Hoshmand, 1994).

Results

Germination percentage (GP)

Kargi and CSR 30 germination response was evalu-
ated under salinity stress and ZnO-NPs treatments.
The germination of Kargi and CSR 30 under NaCl
treatments T1, T2, T3, was reduced (31.82, 40.91, 50,
26.19, 35.71 and 45.24%) compared with their con-
trols (Fig. 1). On the contrary, the   ZnO-NPs and
NaCl treatments T4, T5, T6 of Kargi and CSR 30
shows less effect on germination (22.73, 31.82, 36.36,
16.67, 25 and 30.95%), respectively their controls and
NaCl treatments T1, T2, T3 (Fig. 1). Kargi shows
higher GP in normal conditions than CSR 30 and
CSR 30 slightly higher GP in saline conditions.

line conditions in treatments T1, T2, T3 of Kargi and
CSR 30 genotypes followed by their controls, and
the least reductions were obtained in T4, T5, T6
treatments of ZnO-NPs and NaCl in comparison to
their control and T1, T2, T3 (Fig 2). But compared to
Kargi, the CSR 30 shows a slight GI increment in all
treatments (T1, T2, T3, T4, T5, T6) (Fig. 2).

Fig. 1. Impact of ZnO-NPs, NaClin control, and saline
conditions in the GP of Kargi and CSR 30 seeds
after 9 days of treatments. The results are the av-
erages of three replicates. The least significant
value (LSD) among the treatments at p  0.01 is
represented by the error bars.

Germination index (GI)

Salinity stress might also help to lower GI symp-
toms. (Fig 2). The greater GI fall was noticed for sa-

Fig. 2. Effect of ZnO-NPs, NaClin control, and saline
conditions in the GI of Kargi and CSR 30 seeds
after 9 days of treatments. The results are the av-
erages of three replicates. The least significant
value (LSD) among the treatments at p  0.01 is
represented by the error bars

Relative seed germination rate (RGR)

Relative seed germination rate is affected by salinity
stress. In saline NaCl medium (T1, T2, T3) decrease
the RGR in Kargi (32.23, 41.20 and 50.17%) and CSR
(30, 39 and 40%) rice genotypes compared with their
controls. But in saline NaCl and ZnO-NPs treatment
(T4, T5, T6), the rate of RGR is less affected in Kargi

Fig. 3. Effect of ZnO-NPs, NaClin control, and saline
conditions in the RGR of Kargi and CSR 30 seeds
after 9 days of treatments.The results are the aver-
ages of three replicates. The least significant value
(LSD) among the treatments at p  0.01 is repre-
sented by the error bars.
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(23.09, 32.23 and 36.45%) and CSR 30 (21, 30 and
34%) respectively to their controls. The ZnO-NPs
medium T4, T5, T6 showed less affected RGR than
saline medium T1, T2, T3 of Kargi and CSR 30 rice
genotypes. Our experimental result demonstrated
that with a rise in the the degree of salinity stress,
GP, GI, and RGR attributes of Kargi and CSR 30
genotypes were decreased. Application of ZnO-NPs
plays a protective role due to which less impact of
salinity stress has been seen on the GP, GI, and RGR
parameters of Kargi and CSR 30 genotypes.

Discussion

The main goal of this research was to determine the
impact of ZnO-NPs on salinity stress on landrace
Kargi and salt-tolerant rice genotype CSR 30 during
the germination and seedling phases.Previously we
had mentioned that the effect of salinity in plants
depends on species to species. As a result, the early
stages of plant development, such as germination
and seedling, are important periods that decide the
future of the plant’s vegetative and reproductive
growth (Bybordi and Tabatabaei, 2009; Dehnavi et
al., 2020; El-Badri et al., 2021). Figs 1-3 showsthe re-
duction in GP, GI, RGR of Kargi and CSR 30 because
the excessive intake and storage of Na+ and Cl-

which resulted in ion toxicity and osmotic stress.
This further results in nutritional imbalance and
oxidative stress, as well as a reduction in mineral
and water mobilization(“Ecophysiol. High Salin.
Toler. Plants,” 2006; Zhu, 2016).Germination param-
eters such as GP, GI, and RGR  declined in the treat-
ments T1, T2, T3 of Kargi and CSR 30 (Fig. 1, 2, and
3) because of a change in seed imbibition of water
due to a fall in osmotic potential, water absorption is
delayed, resulting in diminished germination.
(Dehnavi et al., 2020; Misra and Gupta, 2005). Be-
cause the higher accumulation of Na+ ions in treat-
ments T1, T2, T3 causes osmotic and pseudo-
drought stress, which reduces water absorption and
alters enzyme processes. This changes nucleic acid
metabolism and hormonal imbalance, lessening the
need for storing seed stores. (Dantas et al.,2007;
Gomes-Filho et al., 2008; Ismail et al., 2022; Misra and
Gupta, 2005; Promila and  Kumar, 2000; Ryu and
Cho, 2015).

Ajouri et al. (2004) and  Muhammad et al., (2015)
stated about the use of ZnO-NPs can enhanveseed
germination and seedling growth, same findings
shown in our study for growth parameter’s GP, GI,

and RGR of treatments T4, T5, T6 of  Kargi and CSR
30 rice genotypes (Figs. 1-3). Sharma et al. (2021a)
described that ZnO-NPs could improve the á-amy-
lase production, antioxidant level, and water up-
take, leading to an enhanced seed germination rate
than normal and saline conditions in rice (Fig. 4).

ZnO-NPs penetrated the seeds coat of rice, pro-
moted the water uptake, increased metabolic activ-
ity, frequent hydrolysis of starch, and upregulated
the antioxidant machinery that scavenged the reac-
tive oxygen species (Afzal et al., 2022; H, 2017;
Sharma et al., 2021b).

Conclusion

In this study, we have demonstrated that a consid-
erable application of ZnO-NPs can alleviate the ef-
fect of salinity throughout the germination and seed-
ling stages. Through this experiment, we have also
classified the differences between salt-tolerant vari-
ety CSR 30 and landrace Kargi.In saline conditions,
the germination parameters GP, GI, RGR are re-
duced in Kargi and CSR 30 but compared to Kargi,
CSR 30 shows a slightly better response to the above
germination parameters. ZnO-NPs improve the seed
germination parameters GP, GI, RGR rate in Kargi
and CSR 30 and CSR 30 here also show slightly
higher response than Kargi for germination param-
eters GP, GI, RGR.

Fig. 4. Diagrammatic representation of the repercussions
of NaCl and ZnO-NPs on seed germination of rice
seed. The ZnO-NPs follow the following mecha-
nisms. (1) Penetrating the seed coat and increas-
ing the uptake of water, (2) ZnO-NPs and amy-
lase complex upregulated the hydrolysis process
of starch, (3) activating the antioxidant machinery
reduced the level of ROS (4) increasing the mobil-
ity of glucose and minerals for enhancing the ger-
mination of rice seeds (H, 2017).
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ZnO-NPs alleviate the effect of salinity by reduc-
ing the level of ROS that produces NaCl uptake by
the seeds. Entry of NaCl through the imbibition pro-
cess can create ionic toxicity and osmotic stressthat
produced ROS that reduced the water uptake result-
ing in a slow breakdown of seed reserves like starch
that reduced the mobilization of sugar and other
important minerals that help in the development
and germination of seeds (Fig. 4), ZnO-NPs can im-
prove elimination of all these by activating the anti-
oxidant machinery that reduces the level of ROS
(Chanu Thounaojam et al., 2021; Itroutwar et al.,
2020; Rajput et al., 2018).
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